Open Access Articles- Top Results for 5-HTTLPR


5-HTTLPR (serotonin-transporter-linked polymorphic region) is a degenerate repeat polymorphic region in SLC6A4, the gene that codes for the serotonin transporter. Since the polymorphism was identified in the middle of the 1990s,[1][2] it has been extensively investigated, e.g., in connection with neuropsychiatric disorders. A 2006 scientific article stated that "over 300 behavioral, psychiatric, pharmacogenetic and other medical genetics papers" had analyzed the polymorphism.[3] While often discussed as an example of gene-environment interaction, this contention is contested.


File:Chromosome 17.svg
The serotonin transporter gene (SLC6A4) with the 5-HTTLPR is located on chromosome 17.

The polymorphism occurs in the promoter region of the gene. Researchers commonly report it with two variations in humans: A short ("s") and a long ("l"), but it can be subdivided further.[4] In connection with the region are two single nucleotide polymorphisms (SNP): rs25531 and rs25532.[5]

One study published in 2000 found 14 allelic variants (14-A, 14-B, 14-C, 14-D, 15, 16-A, 16-B, 16-C, 16-D, 16-E, 16-F, 19, 20 and 22) in a group of around 200 Japanese and Caucasian people.[4] The difference between 16-A and 16-D is the rs25531 SNP. It is also the difference between 14-A and 14-D.[3]

Some studies have found that long allele results in higher serotonin transporter mRNA transcription in human cell lines. The higher level may be due to the A-allele of rs25531, such that subjects with the long-rs25531(A) allelic combination (sometimes written LA) have higher levels while long-rs25531(G) carriers have levels more similar to short-allele carriers. Newer studies examining the effects of genotype may compare the LA/LA genotype against all other genotypes.[6] The allele frequency of this polymorphism seems to vary considerably across populations, with a higher frequency of the long allele in Europe and lower frequency in Asia.[7] Despite speculation to the contrary, the population variation in the allele frequency is more likely due to neutral evolutionary processes than natural selection.[7]

Neuropsychiatric disorders

In the 1990s it has been speculated that the polymorphism might be related to affective disorders, and an initial study found such a link.[8] However, another large European study found no such link.[9] A decade later two studies found that 5-HTT polymorphism influences depressive responses to life stress; an example of gene-environment interaction (GxE) not considered in the previous studies.[10][11][12] Two 2009 meta-analyses found no overall GxE effect,[13][14] while a more recent (2011) meta-analysis, demonstrated a positive result.[15] In turn, the 2011 meta-analysis has been criticized as being overly inclusive (e.g. including hip fractures as outcomes), for deeming a study supportive of the GxE interaction which is actually in the opposite direction, and because of substantial evidence of publication bias and data mining in the literature.[16] This criticism points out that if the original finding were real, and not the result of publication bias, we would expect that those replication studies which are closest in design to the original are the most likely to replicate—instead we find the opposite. This suggests that authors may be data dredging for measures and analytic strategies which yield the results they want.

Treatment response

With the results from one study the polymorphism was thought to be related to treatment response so that long-allele patients respond better to antidepressants.[17] Another antidepressant treatment response study did, however, rather point to the rs25531 SNP,[18] and a large study by the group of investigators found a "lack of association between response to an SSRI and variation at the SLC6A4 locus".[19]

One study could find a treatment response effect for repetitive transcranial magnetic stimulation to drug-resistant depression with long/long homozygotes benefitting more than short-allele carriers. The researchers found a similar effect for the Val66Met polymorphism in the BDNF gene.[20]

Personality traits

5-HTTLPR may be related to personality traits: Two 2004 meta-analyses found 26 research studies investigating the polymorphism in relation to anxiety-related traits.[21][22] The initial and classic 1996 study found s-allele carriers to on average have slightly higher neuroticism score with the NEO PI-R personality questionnaire,[23] and this result was replicated by the group with new data.[24] Some other studies have, however, failed to find this association,[25] nor with peer-rated neuroticism,[26] and a 2006 review noted the "erratic success in replication" of the first finding.[27] A meta-analysis published in 2004 stated that the lack of replicability was "largely due to small sample size and the use of different inventories".[21] They found that neuroticism as measured with the NEO-family of personality inventories had quite significant association with 5-HTTLPR while the trait harm avoidance from the Temperament and Character Inventory family did not have any significant association. A similar conclusion was reached in an updated 2008 meta-analysis.[28] However, based on over 4000 subjects, the largest study that used the NEO PI-R found no association between variants of the serotonin transporter gene (including 5-HTTLPR) and neuroticism, or its facets (Anxiety, Angry-Hostility, Depression, Self-Consciousness, Impulsiveness, and Vulnerability).[29]

In a study published in 2009, authors found that individuals homozygous for the long allele of 5-HTTLPR paid more attention on average to positive affective pictures while selectively avoiding negative affective pictures presented alongside the positive pictures compared to their heterozygous and short-allele-homozygous peers. This biased attention of positive emotional stimuli suggests they may tend to be more optimistic.[30] Other research indicates carriers of the short 5-HTTLPR allele have difficulty disengaging attention from emotional stimuli compared to long allele homozygotes.[31] Another study published in 2009 using an eye tracking assessment of information processing found that short 5-HTTLPR allele carriers displayed an eye gaze bias to view positive scenes and avoid negative scenes, while long allele homozygotes viewed the emotion scenes in a more even-handed fashion.[32] This research suggests that short 5-HTTLPR allele carriers may be more sensitive to emotional information in the environment than long allele homozygotes.

Another research group have given evidence for a modest association between shyness and the long form in grade school children.[33] This is, however, just a single report and the link is not investigated as intensively as for the anxiety-related traits.


Molecular neuroimaging studies may use PET scanners such as this type for examining the effect of the 5-HTTLPR genotypes on serotonin transporter binding in the human brain.

Molecular neuroimaging studies have examined the association between genotype and serotonin transporter binding with positron emission tomography (PET) and SPECT brain scanners. Such studies use a radioligand that binds—preferably selectively—to the serotonin transporter so an image can be formed that quantifies the distribution of the serotonin transporter in the brain. One study could see no difference in serotonin transporter availability between long/long and short/short homozygotes subjects among 96 subjects scanned with SPECT using the iodine-123 β-CIT radioligand.[34] Using the PET radioligand carbon-11-labeled McN 5652 another research team could neither find any difference in serotonin transporter binding between genotype groups.[35] Newer studies have used the radioligand carbon-11-labeled DASB with one study finding higher serotonin transporter binding in the putamen of LA homozygotes compared to other genotypes.[6] Another study with similar radioligand and genotype comparison found higher binding in the midbrain.[36]

Associations between the polymorphism and the grey matter in parts of the anterior cingulate brain region have also been reported based on magnetic resonance imaging brain scannings and voxel-based morphometry analysis.[37] 5-HTTLPR short allele–driven amygdala hyperreactivity was confirmed in a large (by MRI study standards) cohort of healthy subjects with no history of psychiatric illness or treatment.[38] Brain blood flow measurements with positron emission tomography brain scanners can show genotype-related changes.[39] The glucose metabolism in the brain has also been investigated with respect to the polymorphism,[40] and the functional magnetic resonance imaging (fMRI) brain scans have also been correlated to the polymorphism.[41][42]

Especially the amygdala brain structure has been the focus of the functional neuroimaging studies.


The relationship between the Event Related Potentials P3a and P3b and the genetic variants of 5-HTTLPR were investigated using an auditory oddball paradigm and revealed short allele homozygotes mimicked those of COMT met/met homozygotes with an enhancement of the frontal, but not parietal P3a and P3b. This suggests a frontal-cortical dopaminergic and serotoninergic mechanism in bottom-up attentional capture.[43]


  1. ^ A. Heils, A. Teufel, S. Petri, M. Seemann, D. Bengel, U. Balling, P. Riederer & K. P. Lesch (1995). "Functional promoter and polyadenylation site mapping of the human serotonin (5-HT) transporter gene". Journal of Neural Transmission 102 (3): 247–244. PMID 8788073. doi:10.1007/BF01281159. 
  2. ^ A. Heils, A. Teufel, S. Petri, G. Stober, P. Riederer, D. Bengel & Klaus-Peter Lesch (June 1996). "Allelic variation of human serotonin transporter gene expression". Journal of Neurochemistry 66 (6): 2621–2624. PMID 8632190. doi:10.1046/j.1471-4159.1996.66062621.x. 
  3. ^ a b J.R. Wendland, B.J. Martin, M.R. Kruse, Klaus-Peter Lesch, D.L. Murphy (2006). "Simultaneous genotyping of four functional loci of human SLC6A4, with a reappraisal of 5-HTTLPR and rs255531" (PDF). Molecular Psychiatry 274 (3): 1–3. PMID 16402131. doi:10.1038/ 
  4. ^ a b M. Nakamura, S. Ueno, A. Sano & H. Tanabe (2000). "The human serotonin transporter gene linked polymorphism (5-HTTLPR) shows ten novel allelic variants". Molecular Psychiatry 5 (1): 32–38. PMID 10673766. doi:10.1038/ 
  5. ^ [ennis L. Murphy & Klaus-Peter Lesch (February 2008). "Targeting the murine serotonin transporter: insights into human neurobiology". Nature Reviews Neuroscience 9 (2): 85–86. PMID 18209729. doi:10.1038/nrn2284. 
  6. ^ a b Nicole Praschak-Rieder, James Kennedy, Alan A. Wilson, Douglas Hussey, Anahita Boovariwala, Matthaeus Willeit, Nathalie Ginovart, Subi Tharmalingam, Mario Masellis, Sylvain Houle & Jeffrey H. Meyer (August 2007). "Novel 5-HTTLPR allele associates with higher serotonin transporter binding in putamen: a [(11)C] DASB positron emission tomography study". Biological Psychiatry 62 (4): 327–321. PMID 17210141. doi:10.1016/j.biopsych.2006.09.022. 
  7. ^ a b Eisenberg DTA, Hayes MG (2011). "Testing the null hypothesis: comments on "Culture-gene coevolution of individualism-collectivism and the serotonin transporter gene"". Proceedings of the Royal Society B 278 (1704): 329–332. doi:10.1098/rspb.2010.0714. 
  8. ^ D. A. Collier, G. Stober, T. Li, A. Heils, M. Catalano, D. Di Bella, M. J. Arranz, R. M. Murray, D. Bengel, C. R. Muller, G. W. Roberts, E. Smeraldi, G. Kirov, [P. Sham & K. P. Lesch (December 1996). "A novel functional polymorphism within the promoter of the serotonin transporter gene: possible role in susceptibility to affective disorders". Molecular Psychiatry 1 (6): 453–450. PMID 9154246.  Comment: N. Craddock, M. J. Owen (December 1996). "Candidate gene association studies in psychiatric genetics: a SERTain future?". Molecular Psychiatry 1 (6): 434–436. PMID 9154242. 
  9. ^ Julien Mendlewicz, Isabelle Massat, Daniel Souery, Jurgen Del-Favero, Lilijana Oruc, Markus M. Nothen, Douglas Blackwood, Walter Muir], Sharon Battersby, Beny Lerer, Ronen H. Segman, Radka Kaneva, Alessandro Serretti, Roberta Lilli, Christian Lorenzi, Miro Jakovljevic, Sladana Ivezic, Marcella Rietschel, Vihra Milanova & Christine Van Broeckhoven (May 2004). "Serotonin transporter 5HTTLPR polymorphism and affective disorders: no evidence of association in a large European multicenter study". European Journal of Human Genetics 12 (5): 377–372. PMID 14735161. doi:10.1038/sj.ejhg.5201149. 
  10. ^ Caspi, A.; Sugden, K.; Moffitt, T. E.; Taylor, A.; Craig, I. W.; Harrington, H.; McClay, J.; Mill, J.; Martin, J.; Braithwaite, A.; Poulton, R. (2003). "Influence of Life Stress on Depression: Moderation by a Polymorphism in the 5-HTT Gene". Science 301 (5631): 386–389. Bibcode:2003Sci...301..386C. PMID 12869766. doi:10.1126/science.1083968.  edit
  11. ^ Kendler, K.; Kuhn, J.; Vittum, J.; Prescott, C.; Riley, B. (2005). "The interaction of stressful life events and a serotonin transporter polymorphism in the prediction of episodes of major depression: a replication". Archives of General Psychiatry 62 (5): 529–535. PMID 15867106. doi:10.1001/archpsyc.62.5.529.  edit
  12. ^
  13. ^ Risch, N.; Herrell, R.; Lehner, T.; Liang, K.; Eaves, L.; Hoh, J.; Griem, A.; Kovacs, M.; Ott, J.; Merikangas, K. R. (2009). "Interaction between the serotonin transporter gene (5-HTTLPR), stressful life events, and risk of depression: a meta-analysis". Journal of the American Medical Association 301 (23): 2462–2471. PMC 2938776. PMID 19531786. doi:10.1001/jama.2009.878.  edit
  14. ^ Munafo, M.; Durrant, C.; Lewis, G.; Flint, J. (2009). "Gene × Environment Interactions at the Serotonin Transporter Locus". Biological Psychiatry 65 (3): 211–219. PMID 18691701. doi:10.1016/j.biopsych.2008.06.009.  edit
  15. ^ Katja Karg, Margit Burmeister, Kerby Shedden, Srijan Sen (2011). "The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: evidence of genetic moderation.". Archives of General Psychiatry 68 (5): 444–454. PMID 21199959. doi:10.1001/archgenpsychiatry.2010.189.  edit
  16. ^ Duncan, L. E.; Keller, M. C. (2011). "A Critical Review of the First 10 Years of Candidate Gene-by-Environment Interaction Research in Psychiatry". American Journal of Psychiatry 168 (10): 1041–1049. PMC 3222234. PMID 21890791. doi:10.1176/appi.ajp.2011.11020191.  edit
  17. ^ L. Kathryn Durham, Suzin M. Webb, Patrice M. Milos, Cathryn M. Clary, Albert B. Seymour (August 2004). "The serotonin transporter polymorphism, 5HTTLPR, is associated with a faster response time to sertraline in an elderly population with major depressive disorder". Psychopharmacology 174 (4): 525–529. PMID 12955294. doi:10.1007/s00213-003-1562-3. 
  18. ^ Jeffrey B. Kraft, Susan L. Slager, Patrick J. McGrath & Steven P. Hamilton (September 2005). "Sequence analysis of the serotonin transporter and associations with antidepressant response". Biological Psychiatry 58 (5): 374–371. PMID 15993855. doi:10.1016/j.biopsych.2005.04.048. 
  19. ^ Jeffrey B. Kraft, Eric J. Peters, Susan L. Slager, Greg D. Jenkins, Megan S. Reinalda, Patrick J. McGrath & Steven P. Hamilton (March 2007). "Analysis of association between the serotonin transporter and antidepressant response in a large clinical sample". Biological Psychiatry 61 (6): 734–732. PMID 17123473. doi:10.1016/j.biopsych.2006.07.017. 
  20. ^ Luisella Bocchio-Chiavetto, Carlo Miniussi, Roberta Zanardini, Anna Gazzoli, Stefano Bignotti, Claudia Specchia & Massimo Gennarelli (May 2008). "5-HTTLPR and BDNF Val66Met polymorphisms and response to rTMS treatment in drug resistant depression". Neuroscience Letters 437 (2): 130–134. PMID 18450378. doi:10.1016/j.neulet.2008.04.005. 
  21. ^ a b Srijan Sen, Margit Burmeister & Debashis Ghosh (May 2004). "Meta-analysis of the association between a serotonin transporter promoter polymorphism (5-HTTLPR) and anxiety-related personality traits". American Journal of Medical Genetics 127B (1): 85–89. PMID 15108187. doi:10.1002/ajmg.b.20158. 
  22. ^ J. A. Schinka, R. M. Busch, & N. Robichaux-Keene (February 2004). "A meta-analysis of the association between the serotonin transporter gene polymorphism (5-HTTLPR) and trait anxiety". Molecular Psychiatry 9 (2): 197–192. PMID 14966478. doi:10.1038/ 
  23. ^ Klaus-Peter Lesch, D. Bengel, A. Heils, S. Z. Sabol, B. D. Greenberg, S. Petri, J. Benjamin, C. R. Muller, D. H. Hamer & D. L. Murphy (November 1996). "Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region". Science 274 (5292): 1527–1521. Bibcode:1996Sci...274.1527L. PMID 8929413. doi:10.1126/science.274.5292.1527. 
  24. ^ B. D. Greenberg, Q. Li, F. R. Lucas, S. Hu, L. A. Sirota, J. Benjamin, K. P. Lesch, D. Hamer & D. L. Murphy (April 2000). "Association between the serotonin transporter promoter polymorphism and personality traits in a primarily female population sample". American Journal of Medical Genetics 96 (2): 202–206. PMID 10893498. doi:10.1002/(SICI)1096-8628(20000403)96:2<202::AID-AJMG16>3.0.CO;2-J. 
  25. ^ J. D. Flory, S. B. Manuck, R. E. Ferrell, K. M. Dent, D. G. Peters, M. F. Muldoon (January 1999). "Neuroticism is not associated with the serotonin transporter (5-HTTLPR) polymorphism". Molecular Psychiatry 4 (1): 93–96. PMID 10089017. doi:10.1038/ 
  26. ^ D. Ball, L. Hill, B. Freeman], T. C. Eley, J. Strelau, R. Riemann, F. M. Spinath, A. Angleitner & R. Plomin (March 1997). "The serotonin transporter gene and peer-rated neuroticism". NeuroReport 8 (5): 1301–1304. PMID 9175133. doi:10.1097/00001756-199703240-00048. 
  27. ^ R. P. Ebstein (2006). "The molecular genetic architecture of human personality: beyond self-report questionnaires". Molecular Psychiatry 11 (5): 427–445. PMID 16534505. doi:10.1038/ 
  28. ^ Munafò MR, Freimer NB, Ng W, Ophoff R, Veijola J, Miettunen J, Järvelin MR, Taanila A, Flint J. (June 2008). "5-HTTLPR Genotype and Anxiety-Related Personality Traits: A meta-analysis and new data". American Journal of Medical Genetics 150b (2): 271–81. PMC 2819421. PMID 18546120. doi:10.1002/ajmg.b.30808. 
  29. ^ A Terracciano et al. (Dec 2009). "Variants of the serotonin transporter gene and NEO-PI-R Neuroticism: No association in the BLSA and SardiNIA samples.". American Journal of Medical Genetics 150B (8): 1070–7. PMC 2788669. PMID 19199283. doi:10.1002/ajmg.b.30932. 
  30. ^ E.Fox, A.Ridgewell & C.Ashwin (March 2009). "Looking on the bright side: biased attention and the human serotonin transporter gene". Proceedings of the Royal Society B 276 (1663): 1747–1751. doi:10.1098/rspb.2008.1788. 
  31. ^ C.G.Beevers, T.T.Wells, A.J.Ellis & J.E.McGeary (2009). "Association of the Serotonin Transporter Gene Promoter Region (5-HTTLPR) Polymorphism with Biased Attention for Emotional Stimuli". Journal of Abnormal Psychology 118 (3): 670–81. PMC 2841741. PMID 19685963. doi:10.1037/a0016198. 
  32. ^ C.G.Beevers, A.J.Ellis, T.T.Wells, J.E.McGeary (2009). "Serotonin Transporter Gene Promoter Region Polymorphism and Selective Processing of Emotional Images". Biological Psychology 83 (3): 260–5. PMC 2834869. PMID 19715738. doi:10.1016/j.biopsycho.2009.08.007. 
  33. ^ Shoshana Arbelle, Jonathan Benjamin, Moshe Golin, Ilana Kremer, Robert H. Belmaker, Richard P. Ebstein (April 2003). "Relation of shyness in grade school children to the genotype for the long form of the serotonin transporter promoter region polymorphism". American Journal of Psychiatry 160 (4): 671–676. PMID 12668354. doi:10.1176/appi.ajp.160.4.671. 
  34. ^ Christopher H. van Dyc, Robert T. Malison, Julie K. Staley, Leslie K. Jacobsen, John P. Seibyl, Marc Laruelle, Ronald M. Baldwin, Robert B. Innis, Joel Gelernter (March 2004). "Central serotonin transporter availability measured with [123I]beta-CIT SPECT in relation to serotonin transporter genotype". American Journal of Psychiatry 161 (3): 525–521. PMID 14992979. doi:10.1176/appi.ajp.161.3.525. 
  35. ^ Ramin V. Parsey, Ramin S. Hastings, Maria A. Oquendo, Xianzhang Hu, David Goldman, Yung-yu Huang, Norman Simpson, Julie Arcement, Yiyun Huang, R. Todd Ogden, Ronald L. Van Heertum, Victoria Arango & J. John Mann (January 2006). "Effect of a triallelic functional polymorphism of the serotonin-transporter-linked promoter region on expression of serotonin transporter in the human brain". American Journal of Psychiatry 163 (1): 48–41. PMID 16390888. doi:10.1176/appi.ajp.163.1.48. 
  36. ^ M. Reimold, M. N. Smolka, G. Schumann, A. Zimmer, J. Wrase, K. Mann, X.-Z. Hu, D. Goldman, G. Reischl, C. Solbach, H.-J. Machulla, R. Bares & A. Heinz (2007). "Midbrain serotonin transporter binding potential measured with [11C]DASB is affected by serotonin transporter genotype". Journal of Neural Transmission 114 (5): 635–639. PMID 17225932. doi:10.1007/s00702-006-0609-0. 
  37. ^ Lukas Pezawas, Andreas Meyer-Lindenberg, Emily M. Drabant, Beth A. Verchinski, Karen E. Munoz, Bhaskar S. Kolachana, Michael F. Egan, Venkata S. Mattay, Ahmad R. Hariri & Daniel R. Weinberger (June 2005). "5-HTTLPR polymorphism impacts human cingulate-amygdala interactions: a genetic susceptibility mechanism for depression". Nature Neuroscience 8 (6): 828–824. PMID 15880108. doi:10.1038/nn1463. 
  38. ^ Hariri, A.; Drabant, E.; Munoz, K.; Kolachana, B.; Mattay, V.; Egan, M.; Weinberger, D. (2005). "A susceptibility gene for affective disorders and the response of the human amygdala". Archives of General Psychiatry 62 (2): 146–152. PMID 15699291. doi:10.1001/archpsyc.62.2.146.  edit
  39. ^ Tomas Furmark, Maria Tillfors, Hakan Garpenstrand, Ina Marteinsdottir, Bengt Langstrom, Lars Oreland, Mats Fredrikson (May 2004). "Serotonin transporter polymorphism related to amygdala excitability and symptom severity in patients with social phobia". Neuroscience letters 362 (3): 189–182. PMID 15158011. doi:10.1016/j.neulet.2004.02.070. 
  40. ^ A. Graff-Guerrero, C. De la Fuente-Sandoval, B. Camarena, D. Gómez-Martin R. Apiquián, A. Fresán, A. Aguilar, J. C. Méndez-Núñez, C. Escalona-Huerta, R. Drucker-Colin & H. Nicolini (May 2005). "Frontal and limbic metabolic differences in subjects selected according to genetic variation of the SLC6A4 gene polymorphism". NeuroImage 25 (4): 1197–1194. PMID 15850737. doi:10.1016/j.neuroimage.2004.12.020. 
  41. ^ Ahmad R. Hariri, Venkata S. Mattay, Alessandro Tessitore, Bhaskar Kolachana, Francesco Fera, David Goldman, Michael F. Egan & Daniel R. Weinberger (July 2002). "Serotonin transporter genetic variation and the response of the human amygdala". Science 297 (5580): 400–403. Bibcode:2002Sci...297..400H. PMID 12130784. doi:10.1126/science.1071829.  Comment: Greg Miller (July 2002). "Neuroscience. Gene's effect seen in brain's fear response". Science 297 (5580): 319a–319. PMID 12130759. doi:10.1126/science.297.5580.319a. 
  42. ^ Udo Dannlowski, Patricia Ohrmann, Jochen Bauer, Jurgen Deckert, Christa Hohoff, Harald Kugel, Volker Arolt, Walter Heindel, Anette Kersting, Bernhard T. Baune & Thomas Suslow (January 2008). "5-HTTLPR biases amygdala activity in response to masked facial expressions in major depression". Neuropsychopharmacology 33 (2): 418–414. PMID 17406646. doi:10.1038/sj.npp.1301411. 
  43. ^ Heitland, I. et al. (2013). "Auditory event-related potentials (P3a, P3b) and genetic variants within the dopamine and serotonin system in healthy females". Behavioural Brain Research 249: 55–64. doi:10.1016/j.bbr.2013.04.013. 

Further reading