Open Access Articles- Top Results for Adrenergic beta-antagonist

Adrenergic beta-antagonist

Beta-blockers timeline.

Adrenergic beta-receptor blockaders (beta-blockers) are "drugs that bind to but do not activate beta-adrenergic receptors thereby blocking the actions of beta-adrenergic agonists. Adrenergic beta-antagonists are used for treatment of hypertension, cardiac arrhythmias, angina pectoris, glaucoma, migraine headaches, and anxiety".[1] Beta-blockers vary within the class regarding their properties. Beta-blockers that have low intrinsic sympathomimetic activity (ISA), low membrane stabilizing activity, high beta 1-selectivity, and high lipophilicity may be more effective.[2]


Generically available beta-blockers, which subclassify based on selective aspects of their action, include:[3][4]

They further divide by frequency of dosing, cost, and other factors.

Selectivity Agents Applications
Nonselective propranolol, timolol, nadolol, pindolol, penbutolol, carteolol migraine (propranolol)
Cardioselective/beta 1-selectivity Atenolol, Metoprolol, Bisoprolol, Acebutolol, Betaxolol myocardial infarction (metoprolol), heart failure (Carvedilol)
Intrinsic sympathomimetic activity Acebutolol, Pindolol, Penbutolol high blood pressure
Beta-blockers with alpha blocking activity Carvedilol, Labetalol Heart failure (Carvedilol)

Cardioselective/beta 1-selectivity

Even among drugs selective for the beta-1 adrenergic receptor, drugs vary in their selectivity.[5] Generic beta-blockers with selectivity for the beta-1 adrenergic receptor:[3][6]


  • Betaxolol


Non-selective drugs include propranolol, timolol, nadolol, pindolol, penbutolol, and carteolol.

Intrinsic sympathomimetic activity

Generic beta-blockers with intrinsic sympathomimetic activity (less resting bradycardia and lipid changes):[3]

  • Acebutolol
  • Pindolol


  • Penbutolol

Beta-blockers with alpha blocking activity

Generic beta-blockers with alpha blocking activity (more orthostatic hypotension):[3]

  • Carvedilol[9]
  • Labetalol


Propranolol was developed by James Black who later received the Nobel Prize for this and other work.[10]

Mechanism of action

Beta-blockers may have reduced effect due to inability to lower central blood pressure as well as other antihypertensives.[11]


The pharmacogenetics of beta-blockers have been reviewed.[12]

G-protein-coupled receptor kinase

Regarding the treatment of heart failure, there is conflicting evidence whether beta-blockers are as effective in African-American patients as in Anglo patients.[13] This may be due to a polymorphism in African-American patients of the G-protein-coupled receptor kinase (GRK5) that confers a natural "genetic beta-blockade".[14][15]

G protein–coupled cell surface receptor kinase 2 (GRK2) genetic polymorphisms may also affect the response to adrenergic beta-antagonists.[16]

Adrenergic receptor

Genetic polymorphisms of beta-1 (ADRB1) may affect the response to adrenergic beta-antagonist treatment of heart failure.[17]

Single-nucleotide polymorphism of the beta-1 (ADRB1) adrenergic receptor, specifically c.389A>G, may increase cardiac ischemia and SNP of the beta-2 (ADRB2) adrenergic receptor, specifically, c.16G>A SNP of the 4 SNPs studied, may increase hypotension in perioperative care.[18]

Single-nucleotide polymorphism of the beta-2 (ADRB2) adrenergic receptor, specifically c.46G>A and c.79C>G of the four SNPs studied, may affect the response to adrenergic beta-antagonist treatment of acute coronary syndrome.[19]

Genetic polymorphisms of alpha-2C (ADRA2C) may affect the response to adrenergic beta-antagonist treatment of heart failure.[20]

Cytochrome P-450

Beta-blockers such as metoprolol that are metabolized by cytochrome P-450 CYP2D6 allele and may have more drug interactions[21] and inherited variations in metabolism.[22]

Although poor metabolism due to CYP2D6 polymorphisms may be present in patients with drug toxicity due to metoprolol,[23] small studies suggest that careful, slow titration [24][25] and avoidance of other drugs metabolized by CYP2D6[26] may avoid drug toxicity from polymorphisms of cytochrome P-450.


In the 1980s, beta-blockers were thought to be effective if given once daily.[27][28][29] However, in the 1990s[30] and even the 1980s[31] recognition occurred that beta-blockers varied on their duration of action.

Costs of selected beta-blockers from
Atenolol 100 mg – 90 tablets $34.97
Bisoprolol 10 mg – 90 tablets $94.05
Metoprolol succinate 200 mg – 90 tablets $204.58
Metoprolol tartrate 100 mg – 180 tablets $25.97

Clinical uses

The effect of adrenergic beta-antagonists on heart rate may be more predictive than the amount of drug in predicting the drug's benefit[32] or harm.[33] This may be due to individual molecular variations in adrenergic receptors, G-protein-coupled receptor kinases, and metabolism by cytochrome P-450.

The individual beta-blockers have been compared in the treatment of various diseases.[34]

Coronary heart disease

Selected studies of early adrenergic beta-antagonists for reducing hospital mortality after acute myocardial infarction.[35][36][37][38]
Study Patients Intervention Authors' conclusions Notes
Meta-analysis of randomized controlled trials
72,249 patients in 18 trials
(Includes 45,852 patients from the COMMIT trial[36])
Various "This systematic review failed to demonstrate a convincing in-hospital mortality benefit for using beta-blockers early in the course of patients with an acute or suspected MI."
COMMIT (Chen)[36]
Randomized controlled trial
45,852 patients Metoprolol 5–15 mg IV immediately then 50 mg orally every 6 hr for 2 days, then 200 mg controlled release orally once a day for 28 days "The use of early beta-blocker therapy in acute MI reduces the risks of reinfarction and ventricular fibrillation, but increases the risk of cardiogenic shock, especially during the first day or so after admission." Cardiogenic shock increased 3.9% to 5%.
Stroke increased from 1% to 1.1% (no statistical significance)
Meta-analysis of randomized controlled trials
29,260 patients in 51 trials
(Does not include the COMMIT trial)
Various "...4% reduction in the odds of death in short term trials (−8% to 15%)."
Randomized controlled trial
45,852 patients Atenolol 5–10 mg IV immediately, followed by 100 mg/day (either 50 mg twice a day or 100 mg once a day) orally for 7 days "...highly significant (2p less than 0.0002) evidence of an effect on the combined end-point of death, arrest, or reinfarction, suggesting that treatment of about 200 patients would lead to the avoidance of 1 reinfarction, 1 arrest, and 1 death during days 0–7." Use of inotropes increased from 3.3% to 5%
Strokes not recorded.

Adrenergic beta-antagonists were first shown to be effective in 1981.[39]

Adrenergic beta-antagonists do not definitely reduce short term mortality while in the hospital (see evidence table), but may improve long term mortality.[35][37] Metoprolol may[2] or may not[37] be the best beta-blocker for secondary prevention of myocardial infarctions according to meta-analyses of randomized controlled trials.

Cohort studies suggest that atenolol may[40] or may not[41] be better than other adrenergic beta-antagonists.

Heart failure

Main article: Heart failure

Beta-blockers were originally thought to be contraindicated in patients with heart failure. However, trials eventually showed benefit of the drugs. Metoprolol can benefit patients with heart failure.[42][43]

Two cohort studies suggest that atenolol and carvedilol may be more effective than metoprolol for the treatment of heart failure.[44][45]

Drugs with intrinsic sympathomimetic activity may be less beneficial.[37] A systematic review of randomized controlled trials concluded "metoprolol, carvedilol, and bisoprolol all exhibited statistically significant mortality rate reductions compared with placebo, the data were inconclusive for nebivolol or atenolol" and "for every heart rate reduction of 5 beats/min with β-blocker treatment, a commensurate 18% reduction in the risk for death occurred."[32]


Main article: Hypertension

Beta-blockers may not be a good first choice medication in treating hypertension – at least for patients without coronary heart disease.[46] A meta-analysis[33] and accompanying editorial[47] have concluded that the more the drug lowers the heart rate, the lower the benefit of the drug. The harm may be confined to elderly patients.[48] Alternatively, or in addition:

  • beta-blockers may not lower the central aortic pressure as much other anti-hypertensive agents despite similar effects on the brachial systolic pressure.[49]
  • beta-blocker trials suffer from not doing beta-blockers often enough. Most trials in the meta-analysis used atenolol once per day. Only in the INVEST trial, atenolol was dosed twice a day if needed and in this trial atenolol was as effective as a calcium channel blocker.[50]

Beta-blockers may be less effective than diuretics in the treatment of elderly patients with hypertension due to reduced ability to prevent coronary heart disease.[51]


This article incorporates material from the Citizendium article "Adrenergic beta-antagonist", which is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License but not under the GFDL.

  1. ^ MeSH {{{1}}}
  2. ^ a b Soriano JB, Hoes AW, Meems L, Grobbee DE (1997). "Increased survival with beta-blockers: importance of ancillary properties". Progress in Cardiovascular Diseases 39 (5): 445–56. PMID 9122425. doi:10.1016/S0033-0620(97)80039-4. 
  3. ^ a b c d "Drugs for hypertension". Treatment Guidelines from the Medical Letter 3 (34): 39–48. June 2005. PMID 15912125. 
  4. ^ "Nebivolol (Bystolic) for hypertension". The Medical Letter on Drugs and Therapeutics 50 (1281): 17–9. March 2008. PMID 18323772. 
  5. ^ Baker JG (February 2005). "The selectivity of β-adrenoceptor antagonists at the human β1, β2 and β3 adrenoceptors". British Journal of Pharmacology 144 (3): 317–22. PMC 1576008. PMID 15655528. doi:10.1038/sj.bjp.0706048. 
  6. ^ "Drugs for hypertension". Treatment Guidelines from the Medical Letter 7 (77): 1–10; quiz 2 p. January 2009. PMID 19107095. 
  7. ^ a b Tuininga YS, Crijns HJ, Brouwer J et al. (December 1995). "Evaluation of importance of central effects of atenolol and metoprolol measured by heart rate variability during mental performance tasks, physical exercise, and daily life in stable postinfarct patients". Circulation 92 (12): 3415–23. PMID 8521562. doi:10.1161/01.CIR.92.12.3415. 
  8. ^ Sarafidis P, Bogojevic Z, Basta E, Kirstner E, Bakris GL (February 2008). "Comparative efficacy of two different beta-blockers on 24-hour blood pressure control". Journal of Clinical Hypertension 10 (2): 112–8. PMID 18259123. doi:10.1111/j.1751-7176.2008.08021.x. 
  9. ^ Carvedilol Search DailyMed
  10. ^ Stapleton MP (1997). "Sir James Black and propranolol. The role of the basic sciences in the history of cardiovascular pharmacology". Texas Heart Institute Journal 24 (4): 336–42. PMC 325477. PMID 9456487. 
  11. ^ Mackenzie IS, McEniery CM, Dhakam Z, Brown MJ, Cockcroft JR, Wilkinson IB (August 2009). "Comparison of the effects of antihypertensive agents on central blood pressure and arterial stiffness in isolated systolic hypertension". Hypertension 54 (2): 409–13. PMID 19487582. doi:10.1161/HYPERTENSIONAHA.109.133801. 
  12. ^ Shin J, Johnson JA (June 2007). "Pharmacogenetics of β-Blockers". Pharmacotherapy 27 (6): 874–87. PMC 2735790. PMID 17542770. doi:10.1592/phco.27.6.874. 
  13. ^ Shekelle PG, Rich MW, Morton SC et al. (May 2003). "Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials". Journal of the American College of Cardiology 41 (9): 1529–38. PMID 12742294. doi:10.1016/S0735-1097(03)00262-6. 
  14. ^ Liggett, S. B.; Cresci, S.; Kelly, R. J.; Syed, F. M.; Matkovich, S. J.; Hahn, H. S.; Diwan, A.; Martini, J. S.; Sparks, L.; Parekh, R. R.; Spertus, J. A.; Koch, W. J.; Kardia, S. L. R.; Dorn Gw, G. W. (2008). "A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective in heart failure". Nature Medicine 14 (5): 510–517. PMC 2596476. PMID 18425130. doi:10.1038/nm1750.  edit
  15. ^ Online 'Mendelian Inheritance in Man' (OMIM) 600870
  16. ^ Online 'Mendelian Inheritance in Man' (OMIM) 109635
  17. ^ Online 'Mendelian Inheritance in Man' (OMIM) 109630
  18. ^ Zaugg M, Bestmann L, Wacker J et al. (July 2007). "Adrenergic receptor genotype but not perioperative bisoprolol therapy may determine cardiovascular outcome in at-risk patients undergoing surgery with spinal block: the Swiss Beta Blocker in Spinal Anesthesia (BBSA) study: a double-blinded, placebo-controlled, multicenter trial with 1-year follow-up". Anesthesiology 107 (1): 33–44. PMID 17585213. doi:10.1097/01.anes.0000267530.62344.a4. 
  19. ^ Lanfear DE, Jones PG, Marsh S, Cresci S, McLeod HL, Spertus JA (September 2005). "Beta2-adrenergic receptor genotype and survival among patients receiving beta-blocker therapy after an acute coronary syndrome". JAMA 294 (12): 1526–33. PMID 16189366. doi:10.1001/jama.294.12.1526. 
  20. ^ Online 'Mendelian Inheritance in Man' (OMIM) 104250
  21. ^ Onalan O, Cumurcu BE, Bekar L (May 2008). "Complete atrioventricular block associated with concomitant use of metoprolol and paroxetine". Mayo Clinic Proceedings 83 (5): 595–9. PMID 18452693. doi:10.4065/83.5.595. 
  22. ^ Nozawa T, Taguchi M, Tahara K et al. (November 2005). "Influence of CYP2D6 genotype on metoprolol plasma concentration and beta-adrenergic inhibition during long-term treatment: a comparison with bisoprolol". Journal of Cardiovascular Pharmacology 46 (5): 713–20. PMID 16220080. doi:10.1097/01.fjc.0000184117.76188.68. 
  23. ^ Wuttke H, Rau T, Heide R et al. (October 2002). "Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects". Clinical Pharmacology and Therapeutics 72 (4): 429–37. PMID 12386645. doi:10.1067/mcp.2002.127111. 
  24. ^ Terra SG, Pauly DF, Lee CR et al. (March 2005). "beta-Adrenergic receptor polymorphisms and responses during titration of metoprolol controlled release/extended release in heart failure". Clinical Pharmacology and Therapeutics 77 (3): 127–37. PMID 15735607. doi:10.1016/j.clpt.2004.10.006. 
  25. ^ Zineh I, Beitelshees AL, Gaedigk A et al. (December 2004). "Pharmacokinetics and CYP2D6 genotypes do not predict metoprolol adverse events or efficacy in hypertension". Clinical Pharmacology and Therapeutics 76 (6): 536–44. PMID 15592325. doi:10.1016/j.clpt.2004.08.020. 
  26. ^ Fux R, Mörike K, Pröhmer AM et al. (October 2005). "Impact of CYP2D6 genotype on adverse effects during treatment with metoprolol: a prospective clinical study". Clinical Pharmacology and Therapeutics 78 (4): 378–87. PMID 16198657. doi:10.1016/j.clpt.2005.07.004. 
  27. ^ Kaplan, Norman M.; Lieberman, Ellin (1990). "Treatment of Hypertension: Drug Therapy". Clinical Hypertension (Fifth ed.). Baltimore: Williams & Wilkins. p. 220. ISBN 0-683-04522-9. All beta-blockers act longer on the blood pressure than the pharmacokinetic data would imply. In moderate doses, most beta-blokders will likely keep the blood pressure down when given once daily. To ensure adequate control, early morning blood pressures should be measured before the daily dose is taken 
  28. ^ Johansson SR, McCall M, Wilhelmsson C, Vedin JA (May 1980). "Duration of action of beta blockers". Clinical Pharmacology and Therapeutics 27 (5): 593–601. PMID 6102896. doi:10.1038/clpt.1980.84. 
  29. ^ Watson RD, Stallard TJ, Littler WA (June 1979). "Influence of once-daily administration of beta-adrenoceptor antagonists on arterial pressure and its variability". Lancet 1 (8128): 1210–3. PMID 87678. doi:10.1016/S0140-6736(79)91896-8. Patients were treated with either propranolol 240 mg (8 patients), metoprolol 200 mg (8 patients), or acebutolol 400 mg (4 patients) taken once daily. 
  30. ^ Kaplan, Norman M.; Lieberman, Ellin (1994). "Treatment of Hypertension: Drug Therapy". Clinical Hypertension (Sixth ed.). Baltimore: Williams & Wilkins. p. 225. ISBN 0-683-04544-X. In the usual doses prescribed, various beta blockers have equal antihypertensive efficacy. However, they many not all provide full 24-hour lowering of the BP which may be particularly critical in protecting against early morning cardiovascular catastrophes. Metoprolol blunted this rise, but atenolol and pindolol did not (Raftery and Carrageta, 1985). Neutel et al, (1990) found a similar lack of 24-hour effect with once-daily atenolol but a sustained effect with acebutolol. Moreover, twice-daily doses of "cardioselective" agents may preserve this cardioselectivity better than once-daily large doses (Lipworth et al, 1991). 
  31. ^ Raftery EB, Carrageta MO (April 1985). "Hypertension and beta-blockers. Are they all the same?". International Journal of Cardiology 7 (4): 337–46. PMID 2859251. doi:10.1016/0167-5273(85)90089-0. 
  32. ^ a b McAlister FA, Wiebe N, Ezekowitz JA, Leung AA, Armstrong PW (June 2009). "Meta-analysis: beta-blocker dose, heart rate reduction, and death in patients with heart failure". Annals of Internal Medicine 150 (11): 784–94. PMID 19487713. doi:10.7326/0003-4819-150-11-200906020-00006. 
  33. ^ a b Bangalore S, Sawhney S, Messerli FH (October 2008). "Relation of beta-blocker-induced heart rate lowering and cardioprotection in hypertension". Journal of the American College of Cardiology 52 (18): 1482–9. PMID 19017516. doi:10.1016/j.jacc.2008.06.048. 
  34. ^ Dean L (2007). "Comparing Beta Blockers". PubMed Clinical Q&A. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information. Based on Oregon Drug Effectiveness Review Project 
  35. ^ a b c Brandler E, Paladino L, Sinert R (January 2010). "Does the early administration of beta-blockers improve the in-hospital mortality rate of patients admitted with acute coronary syndrome?". Academic Emergency Medicine 17 (1): 1–10. PMID 20078433. doi:10.1111/j.1553-2712.2009.00625.x. 
  36. ^ a b c Chen ZM, Pan HC, Chen YP et al. (November 2005). "Early intravenous then oral metoprolol in 45,852 patients with acute myocardial infarction: randomised placebo-controlled trial". Lancet 366 (9497): 1622–32. PMID 16271643. doi:10.1016/S0140-6736(05)67661-1.  Reviewed in:
  37. ^ a b c d e Freemantle N, Cleland J, Young P, Mason J, Harrison J (June 1999). "β Blockade after myocardial infarction: systematic review and meta regression analysis". BMJ 318 (7200): 1730–7. PMC 31101. PMID 10381708. doi:10.1136/bmj.318.7200.1730. 
  38. ^ a b "Randomised trial of intravenous atenolol among 16 027 cases of suspected acute myocardial infarction: ISIS-1. First International Study of Infarct Survival Collaborative Group". Lancet 2 (8498): 57–66. July 1986. PMID 2873379. doi:10.1016/S0140-6736(02)92899-0. 
  39. ^ "Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction". The New England Journal of Medicine 304 (14): 801–7. April 1981. PMID 7010157. doi:10.1056/NEJM198104023041401. 
  40. ^ Rinfret S, Abrahamowicz M, Tu J et al. (February 2007). "A population-based analysis of the class effect of beta-blockers after myocardial infarction". American Heart Journal 153 (2): 224–30. PMID 17239680. doi:10.1016/j.ahj.2006.11.008. 
  41. ^ Andersen SS, Hansen ML, Gislason GH et al. (2009). "Mortality and reinfarction among patients using different beta-blockers for secondary prevention after a myocardial infarction". Cardiology 112 (2): 144–50. PMID 18612201. doi:10.1159/000143389. 
  42. ^ Waagstein F, Bristow MR, Swedberg K et al. (December 1993). "Beneficial effects of metoprolol in idiopathic dilated cardiomyopathy. Metoprolol in Dilated Cardiomyopathy (MDC) Trial Study Group". Lancet 342 (8885): 1441–6. PMID 7902479. doi:10.1016/0140-6736(93)92930-r. 
  43. ^ Packer M, Bristow MR, Cohn JN et al. (May 1996). "The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. U.S. Carvedilol Heart Failure Study Group". The New England Journal of Medicine 334 (21): 1349–55. PMID 8614419. doi:10.1056/NEJM199605233342101. 
  44. ^ Kramer JM, Curtis LH, Dupree CS et al. (December 2008). "Comparative effectiveness of beta-blockers in elderly patients with heart failure". Archives of Internal Medicine 168 (22): 2422–8; discussion 2428–32. PMID 19064824. doi:10.1001/archinternmed.2008.511. 
  45. ^ Go AS, Yang J, Gurwitz JH, Hsu J, Lane K, Platt R (December 2008). "Comparative effectiveness of different beta-adrenergic antagonists on mortality among adults with heart failure in clinical practice". Archives of Internal Medicine 168 (22): 2415–21. PMID 19064823. doi:10.1001/archinternmed.2008.506. 
  46. ^ Lindholm LH, Carlberg B, Samuelsson O (2005). "Should beta blockers remain first choice in the treatment of primary hypertension? A meta-analysis". Lancet 366 (9496): 1545–53. PMID 16257341. doi:10.1016/S0140-6736(05)67573-3. 
  47. ^ Kaplan NM (October 2008). "Beta-blockers in hypertension: adding insult to injury". Journal of the American College of Cardiology 52 (18): 1490–1. PMID 19017517. doi:10.1016/j.jacc.2008.08.008. 
  48. ^ Khan N, McAlister FA (June 2006). "Re-examining the efficacy of β-blockers for the treatment of hypertension: a meta-analysis". CMAJ 174 (12): 1737–42. PMC 1471831. PMID 16754904. doi:10.1503/cmaj.060110. 
  49. ^ Williams B, Lacy PS, Thom SM et al. (March 2006). "Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study". Circulation 113 (9): 1213–25. PMID 16476843. doi:10.1161/CIRCULATIONAHA.105.595496. 
  50. ^ Pepine CJ, Handberg EM, Cooper-DeHoff RM et al. (December 2003). "A calcium antagonist vs a non-calcium antagonist hypertension treatment strategy for patients with coronary artery disease. The International Verapamil-Trandolapril Study (INVEST): a randomized controlled trial". JAMA 290 (21): 2805–16. PMID 14657064. doi:10.1001/jama.290.21.2805. 
  51. ^ Messerli FH, Grossman E, Goldbourt U (June 1998). "Are beta-blockers efficacious as first-line therapy for hypertension in the elderly? A systematic review". JAMA 279 (23): 1903–7. PMID 9634263. doi:10.1001/jama.279.23.1903.