Open Access Articles- Top Results for Beta-2 adrenergic receptor

Beta-2 adrenergic receptor

External IDsOMIM109690 MGI87938 HomoloGene30948 IUPHAR: 29 ChEMBL: 210 GeneCards: ADRB2 Gene
RNA expression pattern
File:PBB GE ADRB2 206170 at tn.png
More reference expression data
RefSeq (mRNA)NM_000024NM_007420
RefSeq (protein)NP_000015NP_031446
Location (UCSC)Chr 5:
148.21 – 148.21 Mb
Chr 18:
62.18 – 62.18 Mb
PubMed search[1][2]

The beta-2 adrenergic receptor2 adrenoreceptor), also known as ADRB2, is a beta-adrenergic receptor within a cell membrane which reacts with adrenaline (epinephrine) as a hormone or neurotransmitter affecting muscles or organs. The official symbol for the human gene encoding the β2 adrenoreceptor is ADRB2.[1]


The ADRB2 gene is intronless. Different polymorphic forms, point mutations, and/or downregulation of this gene are associated with nocturnal asthma, obesity and type 2 diabetes.[2]


The 3D crystallographic structure (see figure and links to the right) of the β2-adrenergic receptor has been determined[3][4][5] by making a fusion protein with lysozyme to increase the hydrophilic surface area of the protein for crystal contacts.


This receptor is directly associated with one of its ultimate effectors, the class C L-type calcium channel CaV1.2. This receptor-channel complex is coupled to the Gs G protein, which activates adenylyl cyclase, catalysing the formation of cyclic adenosine monophosphate (cAMP) which then activates protein kinase A, and the counterbalancing phosphatase PP2A. The assembly of the signaling complex provides a mechanism that ensures specific and rapid signaling. A two-state biophysical and molecular model has been proposed to account for the pH and REDOX sensitivity of this and other GPCRs.[6]

Beta-2 Adrenergic Receptors have also been found to couple with Gi, possibly providing a mechanism by which response to ligand is highly localized within cells. In contrast, Beta-1 Adrenergic Receptors are coupled only to Gs, and stimulation of these results in a more diffuse cellular response.[7] This appears to be mediated by cAMP induced PKA phosphorylation of the receptor.[8]


Actions of the β2 receptor include:

Muscular system

Tissue/Effect Function

Smooth muscle relaxation in:


inhibits labor
GI tract (decreases motility) Delay digestion during fight-or-flight response

detrusor urinae muscle of bladder wall[9] This effect is stronger than the alpha-1 receptor effect of contraction.

Delay need of micturition
seminal tract[10]
bronchi[11] Facilitate respiration (agonists can be useful in treating asthma)

blood vessels

Increase perfusion of target organs needed during fight-or-flight
striated muscle Tremor[10] (via PKA mediated facilitation of presynaptic Ca2+ influx leading to acetylcholine release)
Increased mass and contraction speed[10] fight-or-flight
glycogenolysis[10] provide glucose fuel
pancreas Insulin secretion increases uptake of glucose by muscle

Circulatory system


In the normal eye, beta-2 stimulation by salbutamol increases intraocular pressure via net:

In glaucoma, drainage is reduced ( open-angle glaucoma) or blocked completely (closed-angle glaucoma). In such cases, beta-2 stimulation with its consequent increase in humour production is highly contra-indicated, and conversely, a topical beta-2 antagonist such as timolol may be employed.

Digestive system




(Beta blockers)

* denotes selective agonists to the receptor.


Beta-2 adrenergic receptor has been shown to interact with:

See also


  1. ^ "Entrez Gene: ADRB2 adrenoceptor beta 2, surface". Retrieved 8 February 2015. 
  2. ^ "Entrez Gene: ADRB2 adrenergic, beta-2-, receptor, surface". 
  3. ^ Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC et al. (Nov 2007). "Crystal structure of the human beta2 adrenergic G-protein-coupled receptor". Nature 450 (7168): 383–7. Bibcode:2007Natur.450..383R. PMID 17952055. doi:10.1038/nature06325. 
  4. ^ Cite error: The named reference Cherezov_2007 was invoked but never defined (see the help page).
  5. ^ Cite error: The named reference Rosenbaum_2007 was invoked but never defined (see the help page).
  6. ^ Rubenstein LA, Zauhar RJ, Lanzara RG (Dec 2006). "Molecular dynamics of a biophysical model for beta2-adrenergic and G protein-coupled receptor activation". Journal of Molecular Graphics & Modelling 25 (4): 396–409. PMID 16574446. doi:10.1016/j.jmgm.2006.02.008. 
  7. ^ Chen-Izu Y, Xiao RP, Izu LT, Cheng H, Kuschel M, Spurgeon H et al. (Nov 2000). "G(i)-dependent localization of beta(2)-adrenergic receptor signaling to L-type Ca(2+) channels". Biophysical Journal 79 (5): 2547–56. Bibcode:2000BpJ....79.2547C. PMC 1301137. PMID 11053129. doi:10.1016/S0006-3495(00)76495-2. 
  8. ^ Zamah AM, Delahunty M, Luttrell LM, Lefkowitz RJ (Aug 2002). "Protein kinase A-mediated phosphorylation of the beta 2-adrenergic receptor regulates its coupling to Gs and Gi. Demonstration in a reconstituted system". The Journal of Biological Chemistry 277 (34): 31249–56. PMID 12063255. doi:10.1074/jbc.M202753200. 
  9. ^ von Heyden B, Riemer RK, Nunes L, Brock GB, Lue TF, Tanagho EA (1995). "Response of guinea pig smooth and striated urethral sphincter to cromakalim, prazosin, nifedipine, nitroprusside, and electrical stimulation". Neurourology and Urodynamics 14 (2): 153–68. PMID 7540086. doi:10.1002/nau.1930140208. 
  10. ^ a b c d e Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. ISBN 0-443-07145-4.  Page 163
  11. ^ a b c d e f Fitzpatrick, David; Purves, Dale; Augustine, George (2004). "Table 20:2". Neuroscience (Third ed.). Sunderland, Mass: Sinauer. ISBN 0-87893-725-0. 
  12. ^ Rang, H. P. (2003). Pharmacology. Edinburgh: Churchill Livingstone. ISBN 0-443-07145-4.  Page 270
  13. ^ Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES (Dec 2000). "The sympathetic nerve--an integrative interface between two supersystems: the brain and the immune system". Pharmacological Reviews 52 (4): 595–638. PMID 11121511. 
  14. ^ Fan G, Shumay E, Wang H, Malbon CC (Jun 2001). "The scaffold protein gravin (cAMP-dependent protein kinase-anchoring protein 250) binds the beta 2-adrenergic receptor via the receptor cytoplasmic Arg-329 to Leu-413 domain and provides a mobile scaffold during desensitization". The Journal of Biological Chemistry 276 (26): 24005–14. PMID 11309381. doi:10.1074/jbc.M011199200. 
  15. ^ Shih M, Lin F, Scott JD, Wang HY, Malbon CC (Jan 1999). "Dynamic complexes of beta2-adrenergic receptors with protein kinases and phosphatases and the role of gravin". The Journal of Biological Chemistry 274 (3): 1588–95. PMID 9880537. doi:10.1074/jbc.274.3.1588. 
  16. ^ McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ et al. (Apr 2001). "Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta -opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy". The Journal of Biological Chemistry 276 (17): 14092–9. PMID 11278447. doi:10.1074/jbc.M008902200. 
  17. ^ Karoor V, Wang L, Wang HY, Malbon CC (Dec 1998). "Insulin stimulates sequestration of beta-adrenergic receptors and enhanced association of beta-adrenergic receptors with Grb2 via tyrosine 350". The Journal of Biological Chemistry 273 (49): 33035–41. PMID 9830057. doi:10.1074/jbc.273.49.33035. 
  18. ^ Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan NJ, von Zastrow M (Jun 2011). "SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors". Nature Cell Biology 13 (6): 715–21. PMC 3113693. PMID 21602791. doi:10.1038/ncb2252. 
  19. ^ Karthikeyan S, Leung T, Ladias JA (May 2002). "Structural determinants of the Na+/H+ exchanger regulatory factor interaction with the beta 2 adrenergic and platelet-derived growth factor receptors". The Journal of Biological Chemistry 277 (21): 18973–8. PMID 11882663. doi:10.1074/jbc.M201507200. 
  20. ^ Hall RA, Ostedgaard LS, Premont RT, Blitzer JT, Rahman N, Welsh MJ et al. (Jul 1998). "A C-terminal motif found in the beta2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins". Proceedings of the National Academy of Sciences of the United States of America 95 (15): 8496–501. PMC 21104. PMID 9671706. doi:10.1073/pnas.95.15.8496. 
  21. ^ Hall RA, Premont RT, Chow CW, Blitzer JT, Pitcher JA, Claing A et al. (Apr 1998). "The beta2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange". Nature 392 (6676): 626–30. PMID 9560162. doi:10.1038/33458. 

Further reading


External links

  • 2-adrenoceptor". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology.