Adverts

Open Access Articles- Top Results for Choline transporter

Choline transporter

Template:Infobox3cols/rowTemplate:Infobox3cols/rowTemplate:Infobox3cols/rowTemplate:Infobox3cols/row
Identifiers
SymbolsSLC5A7 ; CHT; CHT1; HMN7A; hCHT
External IDsOMIM608761 HomoloGene32516 IUPHAR: 914 GeneCards: SLC5A7 Gene
Orthologs
SpeciesHumanMouse
Entrez6048263993
EnsemblENSG00000115665ENSMUSG00000023945
UniProtQ9GZV3Q8BGY9
RefSeq (mRNA)NM_021815NM_022025
RefSeq (protein)NP_068587NP_071308
Location (UCSC)Chr 2:
108.6 – 108.63 Mb
Chr 17:
54.27 – 54.3 Mb
PubMed search[1][2]

The high-affinity choline transporter (ChT) also known as solute carrier family 5 member 7 is a protein in humans that is encoded by the SLC5A7 gene.[1] It is a plasmalemmal transporter and carries choline into acetylcholine-synthesizing neurons.

Hemicholinium-3 is an inhibitor of the ChT and can be used to deplete acetylcholine stores, while coluracetam is an enhancer of the ChT and can increase cholinergic neurotransmission by enhancing acetylcholine synthesis.

Function

Choline is a direct precursor of acetylcholine (ACh), a neurotransmitter of the central and peripheral nervous system that regulates a variety of autonomic, cognitive, and motor functions. SLC5A7 is a Na(+)- and Cl(-)- dependent high-affinity transporter that mediates the uptake of choline for acetylcholine synthesis in cholinergic neurons.[1][2]

Mutations in the SLC5A7 gene have been associated with Distal spinal muscular atrophy with vocal cord paralysis (distal hereditary motor neuropathy type 7A).[3]

Model organisms

Model organisms have been used in the study of SLC5A7 function. A conditional knockout mouse line called Slc5a7tm1a(KOMP)Wtsi was generated at the Wellcome Trust Sanger Institute.[4] Male and female animals underwent a standardized phenotypic screen[5] to determine the effects of deletion.[6][7][8][9] Additional screens performed: - In-depth immunological phenotyping[10]

See also

References

  1. ^ a b "Entrez Gene: Solute carrier family 5 (choline transporter), member 7". 
  2. ^ Apparsundaram S, Ferguson SM, George AL, Blakely RD (October 2000). "Molecular cloning of a human, hemicholinium-3-sensitive choline transporter". Biochem. Biophys. Res. Commun. 276 (3): 862–7. PMID 11027560. doi:10.1006/bbrc.2000.3561. 
  3. ^ Barwick, K. E. S.; Wright, J.; Al-Turki, S.; McEntagart, M. M.; Nair, A.; Chioza, B.; Al-Memar, A.; Modarres, H.; Reilly, M. M.; Dick, K. J.; Ruggiero, A. M.; Blakely, R. D.; Hurles, M. E.; Crosby, A. H. (2012). "Defective Presynaptic Choline Transport Underlies Hereditary Motor Neuropathy". The American Journal of Human Genetics 91 (6): 1103. doi:10.1016/j.ajhg.2012.09.019.  edit
  4. ^ Gerdin AK (2010). "The Sanger Mouse Genetics Programme: high throughput characterisation of knockout mice". Acta Opthalmologica 88: 925-7.doi:10.1111/j.1755-3768.2010.4142.x: Wiley. 
  5. ^ a b "International Mouse Phenotyping Consortium". 
  6. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V et al. (Jun 2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337â€"42. PMC 3572410. PMID 21677750. doi:10.1038/nature10163. 
  7. ^ Dolgin E (Jun 2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. PMID 21677718. doi:10.1038/474262a. 
  8. ^ Collins FS, Rossant J, Wurst W (Jan 2007). "A mouse for all reasons". Cell 128 (1): 9â€"13. PMID 17218247. doi:10.1016/j.cell.2006.12.018. 
  9. ^ White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN et al. (2013). "Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes". Cell 154 (2): 452–64. PMID 23870131. doi:10.1016/j.cell.2013.06.022. 
  10. ^ a b "Infection and Immunity Immunophenotyping (3i) Consortium". 

This article incorporates text from the United States National Library of Medicine, which is in the public domain.

Template:Navbox with collapsible sections


Lua error in package.lua at line 80: module 'Module:Buffer' not found.