Frequent Links
Dalton's law
In chemistry and physics, Dalton's law (also called Dalton's law of partial pressures) states that in a mixture of nonreacting gases, the total pressure exerted is equal to the sum of the partial pressures of the individual gases.^{[1]} This empirical law was observed by John Dalton in 1801 and is related to the ideal gas laws.
Formula
Mathematically, the pressure of a mixture of nonreactive gases can be defined as the summation:
 <math>P_{\text{total}} = \sum_{i=1} ^ n {p_i}</math> or <math>P_{\text{total}} = p_1 + \cdots + p_n</math>
where <math>p_{1},\ p_{2},\dots,\ p_{n}</math> represent the partial pressure of each component.^{[1]}
 <math>\ p_{i} =P_{\text{total}}y_i </math>
where <math>y_i</math> is the mole fraction of the ith component in the total mixture of n components .
Volumebased concentration
The relationship below provides a way to determine the volumebased concentration of any individual gaseous component
 <math>P_i =\frac{P_{\text{total}}C_i}{1,000,000}</math>
where <math>C_i</math> is the concentration of the ith component expressed in ppm.
Dalton's law is not strictly followed by real gases, with deviations being considerably large at high pressures. Under such conditions the volume occupied by the molecules can become significant compared to the free space between them. In particular, the short average distances between molecules raises the intensity of intermolecular forces between gas molecules enough to substantially change the pressure exerted by them. Neither of those effects are considered by the ideal gas model.
References
 ^ ^{a} ^{b} Silberberg, Martin S. (2009). Chemistry : the molecular nature of matter and change (5th ed. ed.). Boston: McGrawHill. p. 206. ISBN 9780073048598.
See also
Lua error in package.lua at line 80: module 'Module:Portal/images/u' not found.
 Henry's law
 Amagat's law
 Boyle's law
 Combined gas law
 GayLussac's law
 Mole (unit)
 Partial pressure
 Vapour pressure
