Adverts

Open Access Articles- Top Results for Energy

Journal of Fundamentals of Renewable Energy and Applications
Power Line Communication System for Grid Distributed Renewable Energy
Journal of Computer Science & Systems Biology
Dimensionality Reduction Techniques and its Applications
International Journal of Innovative Research in Science, Engineering and Technology
Design and Development of PIC Microcontroller Based 3 Phase Energy Meter
International Journal of Innovative Research in Science, Engineering and Technology
Multi Level Invertors for Renewable Energy System

Energy

This article is about the scalar physical quantity. For an overview of and topical guide to energy, see Outline of energy. For other uses, see Energy (disambiguation).
"Energetic" redirects here. For other uses, see Energetic (disambiguation).
File:Lightning over Oradea Romania zoom.jpg
In a typical lightning strike, 500 megajoules of electric potential energy is converted into the same amount of energy in other forms, mostly light energy, sound energy and thermal energy.

In physics, energy is a property of objects which can be transferred to other objects or converted into different forms, but cannot be created or destroyed.[note 1] The ability of a system to perform work is a common description. But, it is difficult to give a comprehensive definition of energy because of its many forms.[1] In SI units, energy is measured in joules, the energy transferred to an object by the mechanical work of moving it 1 metre against a force of 1 newton.[note 2]

All of the many forms of energy are convertible to other kinds of energy, and obey the conservation of energy. Common energy forms include the kinetic energy of a moving object, the radiant energy carried by light, the potential energy stored by an object's position in a force field (gravitational, electric or magnetic), elastic energy stored by stretching solid objects, chemical energy released when a fuel burns, and the thermal energy due to an object's temperature.

According to mass–energy equivalence, any object that has mass when stationary, (called rest mass) also has an equivalent amount of energy whose form is called rest energy. Conversely, any additional energy above the rest energy will increase an object's mass. For example, if you had a sensitive enough scale, you could measure an increase in mass after heating an object. Our Sun transforms nuclear potential energy to other forms of energy; its total mass does not decrease due to that in itself (since it still contains the same total energy even if in different forms), but its mass does decrease when the energy escapes out to its surroundings, largely as radiant energy.

For closed systems, the first law of thermodynamics states that a system's energy is constant unless energy is transferred in or out by work or heat, and that no energy is lost in transfer. This means that it is impossible to create or destroy energy. The second law of thermodynamics states that all systems doing work always lose some energy as waste heat. This creates a limit to the amount of energy that can do work by a heating process, a limit called the available energy. Mechanical and other forms of energy can be transformed in the other direction into thermal energy without such limitations. The total energy of a system can be calculated by adding up all forms of energy in the system. Examples of energy transfer and transformation include generating or making use of electric energy, performing chemical reactions, or lifting an object. Lifting against gravity performs work on the object and stores gravitational potential energy; if it falls, gravity does work on the object which transforms the potential energy to the kinetic energy associated with its speed.

Living organisms require available energy to stay alive, such as the energy humans get from food. Civilisation gets the energy it needs from energy resources such as fossil fuels. The processes of Earth's climate and ecosystem are driven by the radiant energy Earth receives from the sun and the geothermal energy contained within the earth. While total energy is never lost, energy conservation refers to using less available energy, which may be considered lost when it changes to a less useful form, such as waste heat.[2]

Forms

Main article: Forms of energy
File:Hot metalwork.jpg
Thermal energy is energy of microscopic constituents of matter, which may include both kinetic and potential energy.

The total energy of a system can be subdivided and classified in various ways. For example, classical mechanics distinguishes between kinetic energy, which is determined by an object's movement through space, and potential energy, which is a function of the position of an object within a field. It may also be convenient to distinguish gravitational energy, thermal energy, several types of nuclear energy (which utilize potentials from the nuclear force and the weak force), electric energy (from the electric field), and magnetic energy (from the magnetic field), among others. Many of these classifications overlap; for instance, thermal energy usually consists partly of kinetic and partly of potential energy. Some types of energy are a varying mix of both potential and kinetic energy. An example is mechanical energy which is the sum of (usually macroscopic) kinetic and potential energy in a system. Elastic energy in materials is also dependent upon electrical potential energy (among atoms and molecules), as is chemical energy, which is stored and released from a reservoir of electrical potential energy between electrons, and the molecules or atomic nuclei that attract them.[need quotation to verify].The list is also not necessarily complete. Whenever physical scientists discover that a certain phenomenon appears to violate the law of energy conservation, new forms are typically added that account for the discrepancy.

Heat and work are special cases in that they are not properties of systems, but are instead properties of processes that transfer energy. In general we cannot measure how much heat or work are present in an object, but rather only how much energy is transferred among objects in certain ways during the occurrence of a given process. Heat and work are measured as positive or negative depending on which side of the transfer we view them from.

Potential energies are often measured as positive or negative depending on whether they are greater or less than the energy of a specified base state or configuration such as two interacting bodies being infinitely far apart. Wave energies (such as radiant or sound energy), kinetic energy, and rest energy are each greater than or equal to zero because they are measured in comparison to a base state of zero energy: "no wave", "no motion", and "no inertia", respectively.

The distinctions between different kinds of energy is not always clear-cut. As Richard Feynman points out:

These notions of potential and kinetic energy depend on a notion of length scale. For example, one can speak of macroscopic potential and kinetic energy, which do not include thermal potential and kinetic energy. Also what is called chemical potential energy is a macroscopic notion, and closer examination shows that it is really the sum of the potential and kinetic energy on the atomic and subatomic scale. Similar remarks apply to nuclear "potential" energy and most other forms of energy. This dependence on length scale is non-problematic if the various length scales are decoupled, as is often the case ... but confusion can arise when different length scales are coupled, for instance when friction converts macroscopic work into microscopic thermal energy.

Some examples of different kinds of energy:

Forms of energy
Type of energy Description
Kinetic (≥0), that of the motion of a body
Potential A category comprising many forms in this list
Mechanical The sum of (usually macroscopic) kinetic and potential energies
Mechanical wave (≥0), a form of mechanical energy propagated by a material's oscillations
Chemical that contained in molecules
Electric that from electric fields
Magnetic that from magnetic fields
Radiant (≥0), that of electromagnetic radiation including light
Nuclear that of binding nucleons to form the atomic nucleus
Ionization that of binding an electron to its atom or molecule
Elastic that of deformation of a material (or its container) exhibiting a restorative force
Gravitational that from gravitational fields
Rest (≥0) that equivalent to an object's rest mass
Thermal A microscopic, disordered equivalent of mechanical energy
Heat an amount of thermal energy being transferred (in a given process) in the direction of decreasing temperature
Mechanical work an amount of energy being transferred in a given process due to displacement in the direction of an applied force

History

File:Thomas Young (scientist).jpg
Thomas Young – the first to use the term "energy" in the modern sense.

The word energy derives from the Ancient Greek: ἐνέργεια energeia "activity, operation",[3] which possibly appears for the first time in the work of Aristotle in the 4th century BC. In contrast to the modern definition, energeia was a qualitative philosophical concept, broad enough to include ideas such as happiness and pleasure.

In the late 17th century, Gottfried Leibniz proposed the idea of the Latin: vis viva, or living force, which defined as the product of the mass of an object and its velocity squared; he believed that total vis viva was conserved. To account for slowing due to friction, Leibniz theorized that thermal energy consisted of the random motion of the constituent parts of matter, a view shared by Isaac Newton, although it would be more than a century until this was generally accepted. The modern analog of this property, kinetic energy, differs from vis viva only by a factor of two.

In 1807, Thomas Young was possibly the first to use the term "energy" instead of vis viva, in its modern sense.[4] Gustave-Gaspard Coriolis described "kinetic energy" in 1829 in its modern sense, and in 1853, William Rankine coined the term "potential energy". The law of conservation of energy, was also first postulated in the early 19th century, and applies to any isolated system. It was argued for some years whether heat was a physical substance, dubbed the caloric, or merely a physical quantity, such as momentum. In 1845 James Prescott Joule discovered the link between mechanical work and the generation of heat.

These developments led to the theory of conservation of energy, formalized largely by William Thomson (Lord Kelvin) as the field of thermodynamics. Thermodynamics aided the rapid development of explanations of chemical processes by Rudolf Clausius, Josiah Willard Gibbs, and Walther Nernst. It also led to a mathematical formulation of the concept of entropy by Clausius and to the introduction of laws of radiant energy by Jožef Stefan. According to Noether's theorem, the conservation of energy is a consequence of the fact that the laws of physics do not change over time.[5] Thus, since 1918, theorists have understood that the law of conservation of energy is the direct mathematical consequence of the translational symmetry of the quantity conjugate to energy, namely time.

Measurement and units

File:X-ray microcalorimeter diagram.jpg
A schematic diagram of a Calorimeter – An instrument used by physicists to measure energy. In this example it is X-Rays.
Main article: Units of energy

Energy, like mass, is a scalar physical quantity. The joule is the International System of Units (SI) unit of measurement for energy. It is a derived unit of energy, work, or amount of heat. It is equal to the energy expended (or work done) in applying a force of one newton through a distance of one metre. However energy is also expressed in many other units such as ergs, calories, British Thermal Units, kilowatt-hours and kilocalories for instance. There is always a conversion factor for these to the SI unit; for instance; one kWh is equivalent to 3.6 million joules.[6]

The SI unit of power (energy per unit time) is the watt, which is simply a joule per second. Thus, a joule is a watt-second, so 3600 joules equal a watt-hour. The CGS energy unit is the erg, and the imperial and US customary unit is the foot pound. Other energy units such as the electron volt, food calorie or thermodynamic kcal (based on the temperature change of water in a heating process), and BTU are used in specific areas of science and commerce and have unit conversion factors relating them to the joule.

Because energy is defined as the ability to do work on objects, there is no absolute measure of energy. Only the transition of a system from one state into another can be defined and thus energy is measured in relative terms. The choice of a baseline or zero point is often arbitrary and can be made in whatever way is most convenient for a problem. For example in the case of measuring the energy deposited by X-rays as shown in the accompanying diagram, conventionally the technique most often employed is calorimetry. This is a thermodynamic technique that relies on the measurement of temperature using a thermometer or of intensity of radiation using a bolometer.

Energy density is a term used for the amount of useful energy stored in a given system or region of space per unit volume. For fuels, the energy per unit volume is sometimes a useful parameter. In a few applications, comparing, for example, the effectiveness of hydrogen fuel to gasoline it turns out that hydrogen has a higher specific energy than does gasoline, but, even in liquid form, a much lower energy density.

Scientific use

Classical mechanics