Open Access Articles- Top Results for Grey matter

Grey matter

For other uses, see Grey Matter (disambiguation).
Grey matter
File:Spinal nerve.svg
The formation of the spinal nerve from the dorsal and ventral roots. (Grey matter labeled at center right.)
File:Grey matter and white matter - very high mag.jpg
Micrograph showing grey matter, with the characteristic neuronal cell bodies (dark shade of pink), and white matter with its characteristic fine meshwork-like appearance (left of image - lighter shade of pink). HPS stain.
Latin Substantia grisea
Template:If empty
TA Lua error in Module:Wikidata at line 277: attempt to index field 'wikibase' (a nil value).
TH Template:Str mid/core.html {{#property:P1694}}
TE {{#property:P1693}}
FMA Template:FMA
Anatomical terminology

Grey matter (or gray matter) is a major component of the central nervous system, consisting of neuronal cell bodies, neuropil (dendrites and myelinated as well as unmyelinated axons), glial cells (astroglia and oligodendrocytes), synapses, and capillaries. Grey matter is distinguished from white matter, in that grey matter contains numerous cell bodies and relatively few myelinated axons, while white matter is composed chiefly of long-range myelinated axon tracts and contains relatively very few cell bodies.[1] The color difference arises mainly from the whiteness of myelin. In living tissue, grey matter actually has a very light grey color with yellowish or pinkish hues, which come from capillary blood vessels and neuronal cell bodies.[2]


Grey matter refers to unmyelinated neurons and other cells of the central nervous system. It is present in the brain, brainstem and cerebellum, and present throughout the spinal cord.

Grey matter is distributed at the surface of the cerebral hemispheres (cerebral cortex) and of the cerebellum (cerebellar cortex), as well as in the depths of the cerebrum (thalamus; hypothalamus; subthalamus, basal gangliaputamen, globus pallidus, nucleus accumbens; septal nuclei), cerebellar (deep cerebellar nuclei – dentate nucleus, globose nucleus, emboliform nucleus, fastigial nucleus), brainstem (substantia nigra, red nucleus, olivary nuclei, cranial nerve nuclei).

Grey matter is also present in the spinal cord. It travels down the spinal cord in three grey columns. The grey matter in the spinal cord is distributed in an "H" shape. The forward-facing tip is called the anterior horn, and the tip facing the back is called the posterior horn). The grey matter on the left and right side is connected by the gray commissure. The grey matter in the spinal cord consists of interneurons, as well as cell bodies.

Grey matter undergoes development and growth throughout childhood and adolescence.[3]


Grey matter contains most of the brain's neuronal cell bodies. The grey matter includes regions of the brain involved in muscle control, and sensory perception such as seeing and hearing, memory, emotions, speech, decision making, and self-control. [4]

The grey matter in the spinal cord is split into three grey columns.

The grey matter of the spinal cord can be divided into different layers, called Rexed laminae. These describe, in general, the purpose of the cells within the grey matter of the spinal cord at a particular location.

Clinical significance


Volume and cognition in elderly people

Significant positive correlations have been found between grey matter volume in elderly persons and measures of semantic and short-term memory. No significant correlations with white matter volume were found. These results suggest that individual variability in specific cognitive functions that are relatively well preserved with aging is accounted for by the variability of grey matter volume in healthy elderly subjects.[5][non-primary source needed]

Volume associated with bipolar disorder

Some structural differences in grey matter may be associated with psychiatric disorders. There was no difference in whole-brain grey matter volume between patients with bipolar I disorder and healthy controls. Subjects with bipolar I disorder had smaller volumes in the left inferior parietal lobule, right superior temporal gyrus, right middle frontal gyrus, and left caudate. Only the volume of the right middle frontal gyrus was correlated with duration of illness and the number of episodes in patients.[6][non-primary source needed]

Effects of smoking

Older smokers lose grey matter and cognitive function at a greater rate than non-smokers. Chronic smokers who quit during the study lost fewer brain cells and retained better intellectual function than those who continued to smoke.[7][unreliable medical source]



In the current edition[8] of the official Latin nomenclature, Terminologia Anatomica, substantia grisea is used for English grey matter. The adjective grisea for grey is however not attested in classical Latin.[9] The adjective grisea is derived from the French word for grey, gris.[9] Alternative designations like substantia cana [10] and substantia cinerea [11] are being used alternatively. The adjective cana, attested in classical Latin,[12] can mean grey,[9] or greyish white.[13] The classical Latin cinerea means ash-colored.[12]

Additional images

See also


  1. ^ Purves, Dale, George J. Augustine, David Fitzpatrick, William C. Hall, Anthony-Samuel LaMantia, James O. McNamara, and Leonard E. White (2008). Neuroscience. 4th ed. Sinauer Associates. pp. 15–16. ISBN 978-0-87893-697-7. 
  2. ^ Kolb & Whishaw: Fundamentals of Human Neuropsychology (2003) page 49
  3. ^ Sowell, Elizabeth; Thompson, Tessner, Toga (15 November 2001). "Mapping Continued Brain Growth and Gray Matter Density Reduction in Dorsal Frontal Cortex: Inverse Relationships during Postadolescent Brain Maturation". The Journal of Neuroscience. 
  4. ^ Miller, A. K. H.; Alston, Corsellis (28 June 2008). "VARIATION WITH AGE IN THE VOLUMES OF GREY AND WHITE MATTER IN THE CEREBRAL HEMISPHERES OF MAN: MEASUREMENTS WITH AN IMAGE ANALYSER". Neuropathology and Applied Neurobiology 6 (2): 119–132. PMID 7374914. doi:10.1111/j.1365-2990.1980.tb00283.x. 
  5. ^ Taki, Y; Kinomura, S; Sato, K; Goto, R; Wu, K; Kawashima, R; Fukuda, H (March 2011). "Correlation between gray/white matter volume and cognition in healthy elderly people.". Brain and cognition 75 (2): 170–176. PMID 21131121. doi:10.1016/j.bandc.2010.11.008.  (subscription required)
  6. ^ Li, M; Cui, L; Deng, W; Ma, X; Huang, C; Jiang, L; Wang, Y; Collier, DA; Gong, Q; Li, T (February 28, 2011). "Voxel-based morphometric analysis on the volume of gray matter in bipolar I disorder". Psychiatry Res 191 (2): 92–97. PMID 21236649. doi:10.1016/j.pscychresns.2010.09.006.  (subscription required)
  7. ^ "Smoking causes brain cell loss and cognitive decline". The University of Western Australia. 9 February 2011. Retrieved 2011-04-21. 
  8. ^ Federative Committee on Anatomical Terminology (FCAT) (1998). Terminologia Anatomica. Stuttgart: Thieme
  9. ^ a b c Triepel, H. (1910). Die anatomischen Namen. Ihre Ableitung und Aussprache. Mit einem Anhang: Biographische Notizen.(Dritte Auflage). Wiesbaden: Verlag J.F. Bergmann.
  10. ^ Triepel, H. (1910). Nomina Anatomica. Mit Unterstützung von Fachphilologen. Wiesbaden: Verlag J.F. Bergmann.
  11. ^ Schreger, C.H.Th.(1805). Synonymia anatomica. Synonymik der anatomischen Nomenclatur. Fürth: im Bureau für Literatur.
  12. ^ a b Lewis, C.T. & Short, C. (1879). A Latin dictionary founded on Andrews' edition of Freund's Latin dictionary. Oxford: Clarendon Press.
  13. ^ Stearn, W.T. (1983). Botanical Latin. History, grammar, syntax, terminology and vocabulary. (3rd edition). Newton Abbot London: David Charles.

External links