Open Access Articles- Top Results for High Velocity Aircraft Rocket

High Velocity Aircraft Rocket

High Velocity Aircraft Rocket
"Holy Moses" HVARs mounted on a TBF Avenger
Type Air-to-surface rocket
Place of origin United States
Service history
Used by United States military
Production history
Produced 1944-1955
Weight Script error: No such module "convert".
Length Script error: No such module "convert".[1]
Diameter Script error: No such module "convert".
Warhead Script error: No such module "convert". of TNT or Composition B
Warhead weight Script error: No such module "convert".

Engine Script error: No such module "convert". long x Script error: No such module "convert". diameter solid propellant rocket motor
Wingspan Script error: No such module "convert".
Propellant ballistite, extruded
Speed Script error: No such module "convert". plus speed of launching aircraft
single or twin engine aircraft

The High Velocity Aircraft Rocket, or HVAR, also known by the nickname Holy Moses,[2] was an American unguided rocket developed during World War II to attack targets on the ground from aircraft. It saw extensive use during both World War II and the Korean War.

Design and development

The HVAR was designed by engineers at Caltech during World War II as an improvement on the 5-Inch Forward Firing Aircraft Rocket (FFAR), which had a 5 inch diameter warhead but an underpowered 3.25 inch diameter rocket motor. The desire for improved accuracy from the flatter trajectory of a faster rocket spurred the rapid development. HVAR had a constant 5” diameter for both warhead and rocket motor, increasing propellant from 8.5 lb to 23.9 lb of Ballistite. U.S. Ballistite propellant had a sea level specific impulse of over 200 seconds, compared with about 180 seconds for the British Cordite, German WASAG and Soviet PTP propellants. Hercules Powder Company was the principal U.S. supplier of high performance extruded Ballistite propellants: 51.5% nitrocellulose, 43% nitroglycerine, 3.25% diethyl phthalate, 1.25% potassium sulphate, 1% ethyl centralite, and 0.2% carbon black. The propellant in U.S. 3.25” and 5” rocket motors consisted of a single large X shaped “cruciform” Ballistite grain. This went against the common practice of filling rocket motors with different numbers of smaller same-sized tubular charges, the number depending on motor diameter. The central hole in a tubular charge makes it more difficult to extrude, requiring a softer propellant blend that also yields somewhat lower performance. Rocket ∆V increased from 710 ft/sec for the 5” AR to 1375 ft/sec for HVAR, giving the coveted flat trajectory.[3]

Operational service

Two different versions of the HVAR were built during World War II. The warheads were either 1) Mk 4 general purpose warheads with 7.5 lb of TNT and both nose and base fuses or 2) Mk 25 shaped-charge semi-armor-piercing warheads (having an internal copper cone) with 7.5 lb of Composition B and a base fuse only. HVAR testing was complete by D-Day, 6 June 1944, and air-lifted Navy HVAR rockets were soon being loaded on Ninth Air Force P-47Ds to support the break-out at Normandy. Other single-engine delivery aircraft included the F4U Corsair, F6F Hellcat, TBF/TBM Avenger, and SB2C Helldiver. Twin-engine aircraft sometimes armed with HVARs included the P-38 Lightning, PBJ Mitchell bomber and the PV-2 Harpoon bomber. HVAR could penetrate 4 ft of reinforced concrete and was used to sink transports, knock out pillboxes and AA gun emplacements, blow up ammo and oil-storage dumps, and destroy tanks, locomotives, and bunkers. Navy F4U Corsairs and TBF/TBM Avengers made the most extensive use of the rockets in the Pacific theater after the victory in Europe. Over a million HVARs were made during World War II, and production continued until 1955. HVARs remained in the Navy's inventory until the mid-1960s. After World War II, newer versions included a new general purpose type with a proximity fuse, and a new shaped-charge warhead for use against tanks.[4]

HVAR was an effective weapon in the hands of skilled, experienced pilots. It was less effective in the hands of average or inexperienced pilots who were accustomed to taking less careful aim and then “walking in” their gunfire to finally engage a target. HVARs could be fired in pairs or a single rapid-fire salvo but required accurate initial alignment and careful attention to range, or at least a good instinctive sense for the range to the target. HVARs were widely used in the Korean War. AD-1 Skyraiders often carried a dozen HVARs, and sometimes an additional pair of much larger but less accurate Tiny Tim 11.75" rockets. Targets included ships, bunkers, pillboxes, coastal defense guns, ammunition dumps, and occasionally even destroyers and major bridges. Numerous F-51D Mustang “Six-Shooters” (six 50 cal machine guns plus six HVARs) and carrier-based F9F Panther jets flew close air support in Korea. Panthers carried 6 HVARs and four 20 mm cannons, while both planes could carry an additional pair of 500 lb bombs, napalm, or fuel tanks. Neil Armstrong and John Glenn were among the Panther pilots. It was in Korea that HVARs and Tiny Tims bridged the gap between prop planes and jets: F-80C, F-84E, F9F Panther, and F-86 Sabre. Jets gave the fighter pilots improved forward visibility. F-84E Thunderjets proved to be the most capable load-lifting fighter/bombers in Korea, demonstrating an ability to loft up to 24 HVARs and 2 Tiny Tims with a combined rocket weight of 5800 pounds.

In April of 1945, HVAR rockets were used in Operation Bumblebee in the Navy's facility on Island Beach, New Jersey. The HVAR rockets launched 6-inch ramjet engines from wooden frames, accelerating the carbon disulfide fuel ramjets to flight speed. On June 13, the ramjets achieved supersonic speed.[5]

See also

File:Navy rockets enlarged.png
U.S. Navy rockets on display at Michelson Laboratory, NOTS China Lake. Foreground: 11.75" TINY TIM; left to right on centre stands, 5" HOLY MOSES (HVAR), 5" FFAR, 3.5" FFAR, 2.25" SCAR. Right background on table, 7.2" MOUSETRAP; right foreground on floor, barrage rocket launcher.


  1. ^ National Air & Space Museum HVAR exhibit and specifications display, Smithsonian Institution, Washington, D.C.
  2. ^ Parsch 2006
  3. ^ E.W. Price, C.L. Horine, and C.W. Snyder (July 1998). EATON CANYON, A History of Rocket Motor Research and Development in the Caltech-NDRC-Navy Rocket Program, 1941-1946, (PDF). 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, Ohio. AIAA. 
  4. ^ Mulvaney's Ordnance Technical Information System (MOTIS) Ordnance Technical Data Sheet TM 9-1950, Rockets, July 1945
  5. ^ "Flying Stovepipe Developed by APL in 1945", The News, Johns Hopkins University, Applied Physics Laboratory.


  • Parsch, Andreas (2006). "Air-Launched 5-Inch Rockets". Directory of U.S. Military Rockets and Missiles. Retrieved 2011-01-08. 

External links

16x16px Media related to HVAR rocket at Wikimedia Commons

  • "5-inch HVAR". National Museum of the US Air Force. 11 February 2011.