Open Access Articles- Top Results for Karl Weierstrass

Karl Weierstrass

Karl Weierstrass
File:Karl Weierstrass.jpg
Karl Theodor Wilhelm Weierstrass (Weierstraß)
Born (1815-10-31)31 October 1815
Ostenfelde, Province of Westphalia, Kingdom of Prussia
Died 19 February 1897(1897-02-19) (aged 81)
Berlin, Province of Brandenburg, Kingdom of Prussia
Residence Germany
Nationality German
Fields Mathematics
Institutions Gewerbeinstitut
Alma mater University of Bonn
Münster Academy
Doctoral advisor Template:If empty
Doctoral students Nikolai Bugaev
Georg Cantor
Georg Frobenius
Lazarus Fuchs
Wilhelm Killing
Leo Königsberger
Sofia Kovalevskaya
Mathias Lerch
Hans von Mangoldt
Eugen Netto
Adolf Piltz
Carl Runge
Arthur Schoenflies
Friedrich Schottky
Hermann Schwarz
Ludwig Stickelberger
Ernst Kötter
Known for Weierstrass function
Notable awards Copley Medal (1895)

Karl Theodor Wilhelm Weierstrass (German: Weierstraß; 31 October 1815 – 19 February 1897) was a German mathematician often cited as the "father of modern analysis". Despite leaving university without a degree, he studied mathematics and trained as a teacher, eventually teaching mathematics, physics, botany and gymnastics.

Weierstrass formalized the definition of the continuity of a function, and used it and the concept of uniform convergence to prove the Bolzano–Weierstrass theorem and Heine–Borel theorem.


Weierstrass was born in Ostenfelde, part of Ennigerloh, Province of Westphalia.[1]

Weierstrass was the son of Wilhelm Weierstrass, a government official, and Theodora Vonderforst. His interest in mathematics began while he was a Gymnasium student at Theodorianum in Paderborn. He was sent to the University of Bonn upon graduation to prepare for a government position. Because his studies were to be in the fields of law, economics, and finance, he was immediately in conflict with his hopes to study mathematics. He resolved the conflict by paying little heed to his planned course of study, but continued private study in mathematics. The outcome was to leave the university without a degree. After that he studied mathematics at the University of Münster (which was even at this time very famous for mathematics) and his father was able to obtain a place for him in a teacher training school in Münster. Later he was certified as a teacher in that city. During this period of study, Weierstrass attended the lectures of Christoph Gudermann and became interested in elliptic functions. In 1843 he taught in Deutsch-Krone in Westprussia and since 1848 he taught at the Lyceum Hosianum in Braunsberg. Besides mathematics he also taught physics, botanics and gymnastics.[1]

Weierstrass may have had an illegitimate child named Franz with the widow of his friend Carl Wilhelm Borchardt.[2]

After 1850 Weierstrass suffered from a long period of illness, but was able to publish papers that brought him fame and distinction. He took a chair at the Technical University of Berlin, then known as the Gewerbeinstitut. He was immobile for the last three years of his life, and died in Berlin from pneumonia.

Mathematical contributions

Soundness of calculus

Weierstrass was interested in the soundness of calculus, and at the time, there were somewhat ambiguous definitions regarding the foundations of calculus, and hence important theorems could not be proven with sufficient rigour. While Bolzano had developed a reasonably rigorous definition of a limit as early as 1817 (and possibly even earlier) his work remained unknown to most of the mathematical community until years later, and many had only vague definitions of limits and continuity of functions.

Delta-epsilon proofs are first found in the works of Cauchy in the 1820s.[3][4] Cauchy did not clearly distinguish between continuity and uniform continuity on an interval. Notably, in his 1821 Cours d'analyse, Cauchy argued that the (pointwise) limit of (pointwise) continuous functions was itself (pointwise) continuous, a statement interpreted as being incorrect by many scholars. The correct statement is rather that the uniform limit of continuous functions is continuous (also, the uniform limit of uniformly continuous functions is uniformly continuous). This required the concept of uniform convergence, which was first observed by Weierstrass's advisor, Christoph Gudermann, in an 1838 paper, where Gudermann noted the phenomenon but did not define it or elaborate on it. Weierstrass saw the importance of the concept, and both formalized it and applied it widely throughout the foundations of calculus.

The formal definition of continuity of a function, as formulated by Weierstrass, is as follows:

<math>\displaystyle f(x)</math> is continuous at <math>\displaystyle x = x_0</math> if <math> \displaystyle \forall \ \varepsilon > 0\ \exists\ \delta > 0</math> such that for every <math>x</math> in the domain of <math>f</math>,   <math> \displaystyle \ |x-x_0| < \delta \Rightarrow |f(x) - f(x_0)| < \varepsilon.</math>

Using this definition and the concept of uniform convergence, Weierstrass was able to write proofs of several then-unproven theorems such as the intermediate value theorem (for which Bolzano had already given a rigorous proof), the Bolzano–Weierstrass theorem, and Heine–Borel theorem.

Calculus of variations

Weierstrass also made significant advancements in the field of calculus of variations. Using the apparatus of analysis that he helped to develop, Weierstrass was able to give a complete reformulation of the theory which paved the way for the modern study of the calculus of variations. Among the several significant axioms, Weierstrass established a necessary condition for the existence of strong extrema of variational problems. He also helped devise the Weierstrass–Erdmann condition, which gives sufficient conditions for an extremal to have a corner along a given extrema, and allows one to find a minimizing curve for a given integral.

Other analytical theorems

See also List of things named after Karl Weierstrass.

Selected works

Students of Karl Weierstrass

Honours and awards

The lunar crater Weierstrass is named after him.

See also


  1. ^ a b O'Connor, J. J.; Robertson, E. F. (October 1998). "Karl Theodor Wilhelm Weierstrass". School of Mathematics and Statistics, University of St Andrews, Scotland. Retrieved 7 September 2014. 
  2. ^ Biermann, Kurt-R.; Schubring, Gert (1996). "Einige Nachträge zur Biographie von Karl Weierstraß. (German) [Some postscripts to the biography of Karl Weierstrass]". History of mathematics. San Diego, CA: Academic Press. pp. 65–91. 
  3. ^ Grabiner, Judith V. (March 1983), "Who Gave You the Epsilon? Cauchy and the Origins of Rigorous Calculus" (PDF), The American Mathematical Monthly 90 (3): 185–194, JSTOR 2975545, doi:10.2307/2975545 
  4. ^ Cauchy, A.-L. (1823), "Septième Leçon – Valeurs de quelques expressions qui se présentent sous les formes indéterminées <math>\frac{\infty}\infty, \infty^0, \ldots</math> Relation qui existe entre le rapport aux différences finies et la fonction dérivée", Résumé des leçons données à l’école royale polytechnique sur le calcul infinitésimal, Paris, p. 44. 

External links

Lua error in Module:Authority_control at line 346: attempt to index field 'wikibase' (a nil value).