Open Access Articles- Top Results for LASIK


For the article on the drug used for treatment of hypertension of eye surgery, see Lasix.
File:US Navy 070501-N-5319A-007 Capt. Joseph Pasternak, an ophthalmology surgeon at National Naval Medical Center Bethesda, lines up the laser on Marine Corps Lt. Col. Lawrence Ryder's eye before beginning LASIK IntraLase surgery.jpg
LASIK surgery using a excimer laser at US National Naval Medical Center Bethesda
ICD-9-CM 11.71
MeSH D020731
MedlinePlus 007018

LASIK or Lasik (Laser-Assisted in situ Keratomileusis), commonly referred to as laser eye surgery or laser vision correction, is a type of refractive surgery for the correction of myopia, hyperopia, and astigmatism. The LASIK surgery is performed by an ophthalmologist who uses a laser or microkeratome to reshape the eye's cornea in order to improve visual acuity.[1] For most patients, LASIK provides a permanent alternative to eyeglasses or contact lenses.[2]

LASIK is most similar to another surgical corrective procedure, photorefractive keratectomy (PRK), and both represent advances over radial keratotomy in the surgical treatment of refractive errors of vision. For patients with moderate to high myopia or thin corneas which cannot be treated with LASIK and PRK, the phakic intraocular lens is an alternative.[3][4] As of 2011, over 11 million LASIK procedures had been performed in the United States[5] and as of 2009 over 28 million have been performed worldwide.[6]


In 2006, the British National Health Service's National Institute for Health and Clinical Excellence (NICE) considered evidence of the effectiveness and the potential risks of the laser surgery stating "current evidence suggests that photorefractive (laser) surgery for the correction of refractive errors is safe and efficacious for use in appropriately selected patients. Clinicians undertaking photorefractive (laser) surgery for the correction of refractive errors should ensure that patients understand the benefits and potential risks of the procedure. Risks include failure to achieve the expected improvement in unaided vision, development of new visual disturbances, corneal infection and flap complications. These risks should be weighed against those of wearing spectacles or contact lenses."[7] The FDA reports "The safety and effectiveness of refractive procedures has not been determined in patients with some diseases."[8]


Surveys of LASIK find rates of patient satisfaction between 92 and 98 percent.[9][10][11] In March 2008, The American Society of Cataract and Refractive Surgery published a patient satisfaction meta-analysis of over 3,000 peer-reviewed articles from international clinical journals. Data from the prior 10 years revealed a 95.4 percent patient satisfaction rate among LASIK patients.[12]


Some people with poor outcomes from LASIK surgical procedures report a significantly reduced quality of life because of vision problems or physical pain associated with the surgery. A small percentage of patients may need to have another surgery because their condition is over-corrected or under-corrected. Some patients need to wear contact lenses or glasses even after treatment.[13]

In 1999, "Surgical Eyes" was founded in New York city as a resource for patients with complications of LASIK and other refractive surgeries by RK patient Ron Link. "Surgical Eyes" has since been superseded by the "Vision Surgery Rehab Network" (VSRN).[14][15][16][17][18]

Morris Waxler, a former FDA official who was involved in the approval of LASIK, has subsequently criticized its widespread use. In 2010, Waxler made media appearances and claimed that the procedure had a failure rate greater than 50%. The FDA responded that Waxler's information was "filled with false statements, incorrect citations" and "mischaracterization of results".[19]


Vision loss due to infection

On October 10, 2006, WebMD[20] reported on a peer-reviewed study in the Archives of Ophthalmology[21] in which statistical analysis revealed that vision loss risk as a result of an infection for contact lens wearers is higher than vision loss risk as a result of an infection from LASIK. Daily contact lens wearers have a 1-in-2,000 chance of significant vision loss. The researchers calculated the risk of significant vision loss consequence of LASIK surgery to be closer to 1-in-10,000 cases.

Higher-order aberrations

The term "higher-order aberrations" are visual problems that require special testing for diagnosis and are not corrected with normal spectacles (eyeglasses). These aberrations include 'starbursts', 'ghosting', 'halos' and others.[22] Some patients describe these symptoms post-operatively and associate them with the LASIK technique including the formation of the flap and the tissue ablation.[23] The advancement of the LASIK technology has reduced the risk of clinically significant visual impairment after surgery.[citation needed] There is a correlation between pupil size and aberrations.[24] This correlation may be the result of irregularity in the corneal tissue between the untouched part of the cornea and the reshaped part. Daytime post-LASIK vision is optimal, since the pupil size is smaller than the LASIK flap. However, at night, the pupil may dilate such that light passes through the edge of the LASIK flap which gives rise to aberrations. LASIK and PRK may induce spherical aberration if the laser under corrects as it moves outward from the centre of the treatment zone, especially when major corrections are made.[citation needed] Others propose that higher order aberrations are present preoperatively.[25] They can be measured in micrometers (µm) whereas the smallest laser beam size approved by the FDA is about 1000 times larger, at 0.65 mm. In situ keratomileusis effected at a later age increases the incidence of corneal higher-order wavefront aberrations.[26][27] These factors demonstrate the importance of careful patient selection for LASIK treatment.

File:Eye hemorrhage.jpg
A subconjunctival hemorrhage is a common and minor post-LASIK complication.

Dry eyes

Some people experience dry eyes following surgery.[28] Although it is usually temporary it can develop into dry eye syndrome.[29]

Underlying conditions with dry eye such as Sjögren's syndrome are considered contraindications to Lasik.[30]

Treatments include artificial tears, prescription tears and punctal occlusion. Punctal occlusion is accomplished by placing a collagen plug in the tear duct, which normally drains fluid from the eye. Some patients complain of ongoing dry eye symptoms despite such treatments and dry eye symptoms may be permanent.[31]


Some post-LASIK patients see halos and starbursts around bright lights at night[32][33][34] At night, the pupil may dilate to be larger than the flap leading to the edge of the flap or stromal changes causing visual distortion of light that does not occur during the day when the pupil is smaller. The eyes can be examined for large pupils pre-operatively and the risk of this symptom assessed.

Complications due to LASIK have been classified as those that occur due to preoperative, intraoperative, early postoperative, or late postoperative sources:[35] According to the UK National Health Service complications occur in fewer than 5% of cases.[28]

Other complications

  • flap complications – The incidence of flap complications is about 0.244%.[36] Flap complications (such as displaced flaps or folds in the flaps that necessitate repositioning, diffuse lamellar keratitis, and epithelial ingrowth) are common in lamellar corneal surgeries[37] but rarely lead to permanent loss of visual acuity. The incidence of these microkeratome-related complications decreases with increased physician experience.[38]
  • "slipped flap" – is a corneal flap that detaches from the rest of the cornea. The chances of this are greatest immediately after surgery, so patients typically are advised to go home and sleep to let the flap adhere and heal. Patients are usually given sleep goggles or eye shields to wear for several nights to prevent them from dislodging the flap in their sleep. A short operation time may decrease the chance of this complication, as there is less time for the flap to dry. .[citation needed]
  • "Flap interface particles" – are a finding whose clinical significance is undetermined.[39] Particles of various sizes and reflectivity are clinically visible in about 38.7% of eyes examined via slit lamp biomicroscopy and in 100% of eyes examined by confocal microscopy.[39]
  • Diffuse lamellar keratitis (or DLK) – an inflammatory process that involves an accumulation of white blood cells at the interface between the LASIK corneal flap and the underlying stroma. It is known colloquially as "sands of Sahara syndrome" because on slit lamp exam, the inflammatory infiltrate appears similar to waves of sand. The USAeyes organisation reports an incidence of 2.3% after LASIK.[40][41] It is most commonly treated with steroid eye drops. Sometimes it is necessary for the eye surgeon to lift the flap and manually remove the accumulated cells. DLK has not been reported with photorefractive keratectomy due to the absence of flap creation.
  • Infection – the incidence of infection responsive to treatment has been estimated at 0.4%.[41]
  • Post-LASIK corneal ectasia – a condition where the cornea starts to bulge forwards at a variable time after LASIK, causing irregular astigmatism. The condition is similar to keratoconus.
  • subconjunctival hemorrhage – A report shows the incidence of subconjunctival hemorrhage has been estimated at 10.5%.[41][42]
  • Corneal scarring – or permanent problems with cornea's shape making it impossible to wear contact lenses.[13]
  • epithelial ingrowth – the incidence of epithelial ingrowth has been estimated at 0.1%.[41]
  • traumatic flap dislocations – Cases of late traumatic flap dislocations have been reported up to seven years after LASIK.[43]
  • Glaucoma – After LASIK, measurements of intraocular pressure (used to diagnose and treat glaucoma) can be more difficult. The changes also affect the calculations used to select the correct intraocular lens implant for cataract surgery. This is known as "refractive surprise." Preoperative, operative and postoperative measurements can assist.[citation needed]
  • Retinal detachment: the incidence of retinal detachment has been estimated at 0.36 percent.[44]
  • Choroidal neovascularization: the incidence of choroidal neovascularization has been estimated at 0.33 percent.[44]
  • Uveitis: the incidence of uveitis has been estimated at 0.18 percent.[45]
  • for climbers – Although the cornea usually is thinner after LASIK, because of the removal of part of the stroma, refractive surgeons strive to maintain the maximum thickness to avoid structurally weakening the cornea. Decreased atmospheric pressure at higher altitudes has not been demonstrated as extremely dangerous to the eyes of LASIK patients. However, some mountain climbers have experienced a myopic shift at extreme altitudes.[46][47]
  • corneal keratocytes – There is a report of decreases in numbers of corneal keratocytes (fibroblasts) after LASIK.[48]
  • Late postoperative complications – A large body of evidence on the chances of long-term complications is not yet established and may be changing due to advances in operator experience, instruments and techniques.[49][50][51][52]


File:Lasik UOC.ogg
Video of a complete LASIK-treatment

The planning and analysis of corneal reshaping techniques such as LASIK have been standardized by the American National Standards Institute, an approach based on the Alpins Method of astigmatism analysis. The FDA website on LASIK states,

"Before undergoing a refractive procedure, you should carefully weigh the risks and benefits based on your own personal value system, and try to avoid being influenced by friends that have had the procedure or doctors encouraging you to do so."[53]

The procedure involves creating a thin flap on the eye, folding it to enable remodeling of the tissue beneath with a laser and repositioning the flap.

Preoperative procedures

Contact lenses

Patients wearing soft contact lenses are instructed to stop wearing them 5 to 21 days before surgery. One industry body recommends that patients wearing hard contact lenses should stop wearing them for a minimum of six weeks plus another six weeks for every three years the hard contacts have been worn.[54] The cornea is avascular because it must be transparent to function normally. Its cells absorb oxygen from the tear film. Thus, low-oxygen-permeable contact lenses reduce the cornea's oxygen absorption, sometimes resulting in corneal neovascularization—the growth of blood vessels into the cornea. This causes a slight lengthening of inflammation duration and healing time and some pain during surgery, because of greater bleeding. Although some contact lenses (notably modern RGP and soft silicone hydrogel lenses) are made of materials with greater oxygen permeability that help reduce the risk of corneal neovascularization, patients considering LASIK are warned to avoid over-wearing their contact lenses.

Pre-operative examination and education

In the United States, the FDA has approved LASIK for age 18 and over.[55] More importantly the patient's eye prescription should be stable for at least one year prior to surgery. The patient may be examined with pupillary dilation and education given prior to the procedure. Before the surgery, the patient's corneas are examined with a pachymeter to determine their thickness, and with a topographer, or corneal topography machine,[1] to measure their surface contour. Using low-power lasers, a topographer creates a topographic map of the cornea. The procedure is contraindicated if the topographer finds difficulties such as keratoconus[1] The preparatory process also detects astigmatism and other irregularities in the shape of the cornea. Using this information, the surgeon calculates the amount and the location of corneal tissue to be removed. The patient is prescribed and self-administers an antibiotic beforehand to minimize the risk of infection after the procedure and is sometimes offered a short acting oral sedative medication as a pre-medication. Prior to the procedure, anaesthetic eye drops are instilled. Factors that may rule out LASIK for some patients include large pupils, thin corneas and extremely dry eyes.[56]

Operative procedure

Flap creation

A soft corneal suction ring is applied to the eye, holding the eye in place. This step in the procedure can sometimes cause small blood vessels to burst, resulting in bleeding or subconjunctival hemorrhage into the white (sclera) of the eye, a harmless side effect that resolves within several weeks. Increased suction causes a transient dimming of vision in the treated eye. Once the eye is immobilized, a flap is created by cutting through the corneal epithelium and Bowman's layer. This process is achieved with a mechanical microkeratome using a metal blade, or a femtosecond laser that creates a series of tiny closely arranged bubbles within the cornea.[57] A hinge is left at one end of this flap. The flap is folded back, revealing the stroma, the middle section of the cornea. The process of lifting and folding back the flap can sometimes be uncomfortable.

Laser remodelling

The second step of the procedure uses an excimer laser (193 nm) to remodel the corneal stroma. The laser vaporizes the tissue in a finely controlled manner without damaging the adjacent stroma. No burning with heat or actual cutting is required to ablate the tissue. The layers of tissue removed are tens of micrometres thick. Performing the laser ablation in the deeper corneal stroma provides for more rapid visual recovery and less pain than the earlier technique, photorefractive keratectomy (PRK). During the second step, the patient's vision becomes blurry, once the flap is lifted. They will be able to see only white light surrounding the orange light of the laser, which can lead to mild disorientation. The excimer laser uses an eye tracking system that follows the patient's eye position up to 4,000 times per second, redirecting laser pulses for precise placement within the treatment zone. Typical pulses are around 1 millijoule (mJ) of pulse energy in 10 to 20 nanoseconds.[58]

Repositioning of the flap

After the laser has reshaped the stromal layer, the LASIK flap is carefully repositioned over the treatment area by the surgeon and checked for the presence of air bubbles, debris, and proper fit on the eye. The flap remains in position by natural adhesion until healing is completed.

Postoperative care

Patients are usually given a course of antibiotic and anti-inflammatory eye drops. These are continued in the weeks following surgery. Patients are told to rest and are given dark eyeglasses to protect their eyes from bright lights and occasionally protective goggles to prevent rubbing of the eyes when asleep and to reduce dry eyes. They also are required to moisturize the eyes with preservative-free tears and follow directions for prescription drops. Occasionally after the procedure a bandage contact lens is placed to aid the healing, and typically removed after 3–4 days. Patients should be adequately informed by their surgeons of the importance of proper post-operative care to minimize the risk of complications.[59]

Wavefront-guided LASIK

Wavefront-guided LASIK[60] is a variation of LASIK surgery in which, rather than applying a simple correction of only long/short-sightedness and astigmatism (only lower order aberrations as in traditional LASIK), an ophthalmologist applies a spatially varying correction, guiding the computer-controlled excimer laser with measurements from a wavefront sensor. The goal is to achieve a more optically perfect eye, though the final result still depends on the physician's success at predicting changes that occur during healing and other factors that may have to do with the regularity/irregularity of the cornea and the axis of any residual astigmatism. Another important factor is whether the excimer laser can correctly register eye position in 3 dimensions, and to track the eye in all the possible directions of eye movement. If a wavefront guided treatment is performed with less than perfect registration and tracking, pre-existing aberrations can be worsened. In older patients, scattering from microscopic particles (cataract or incipient cataract) may play a role that outweighs any benefit from wavefront correction. Therefore, patients expecting so-called "super vision" from such procedures may be disappointed.[61][62][63][64]

One method of planning and analyzing the results of LASIK surgery (as well as cataract/IOL, corneal, and other refractive surgical procedures) uses vector analysis, and in the case of LASIK, may be combined with a wavefront-guided approach.[61][62][63][64] Many people undergoing LASIK have preexisting astigmatism, which may be regular or irregular, and is caused by some combination of external (corneal surface) and internal (posterior corneal surface, human lens, fluids, retina, and eye-brain interface) optical properties. In some patients, the external optics may have the greater influence, and in other patients, the internal optics may predominate. Importantly, the axes and magnitudes of external and internal astigmatism do not necessarily coincide, but it is the combination of the two that by definition determines the overall optics of the eye.

When treating a patient with preexisting astigmatism, most wavefront-guided LASIK lasers are designed to treat regular astigmatism as determined externally by corneal topography. In patients who have an element of internally induced astigmatism, therefore, the wavefront-guided astigmatism correction may leave regular astigmatism behind (a cross-cylinder effect). If the patient has preexisting irregular astigmatism, wavefront-guided approaches may leave both regular and irregular astigmatism behind. This can result in less-than-optimal visual acuity compared with a wavefront-guided approach combined with vector planning, as shown in a 2008 study.[65] Thus, vector planning offers a better alignment between corneal astigmatism and laser treatment, and leaves less regular astigmatism behind on the cornea, which is advantageous whether irregular astigmatism coexists or not.

The "leftover" astigmatism after a purely surface-guided laser correction can be calculated beforehand, and is called ocular residual astigmatism (ORA). ORA is a calculation of astigmatism due to the noncorneal surface (internal) optics. The purely refraction-based approach represented by wavefront analysis actually conflicts with corneal surgical experience developed over many years.[64]

The pathway to "super vision" thus may require a more customized approach to corneal astigmatism than is usually attempted, and any remaining astigmatism ought to be regular (as opposed to irregular), which are both fundamental principles of vector planning overlooked by a purely wavefront-guided treatment plan.[64] This was confirmed by the 2008 study mentioned above, which found a greater reduction in corneal astigmatism and better visual outcomes under mesopic conditions using wavefront technology combined with vector analysis than using wavefront technology alone, and also found equivalent higher-order aberrations (see below).[65] Vector planning also proved advantageous in patients with keratoconus.[66] Additional discussion of wavefront-guided LASIK can be found here.

No good data can be found that compare the percentage of LASIK procedures that employ wavefront guidance versus the percentage that do not, nor the percentage of refractive surgeons who have a preference one way or the other. Wavefront technology continues to be positioned as an "advance" in LASIK with putative advantages;[67][68][69][70] however, it is clear that not all LASIK procedures are performed with wavefront guidance.[71]

Still, surgeons claim patients are generally more satisfied with this technique than with previous methods, particularly regarding lowered incidence of "halos," the visual artifact caused by spherical aberration induced in the eye by earlier methods. A meta-analysis of eight trials showed a lower incidence of these higher order aberrations in patients who had wavefront-guided LASIK compared to non-wavefront-guided LASIK.[72] Based on their experience, the United States Air Force has described WFG-Lasik as giving "superior vision results".[73]

Onset of presbyopia

Myopic (nearsighted) people who are close to the age (mid- to late-forties) when they will require either reading glasses or bifocal eyeglasses may find that they still require reading glasses despite having undergone refractive LASIK surgery. Myopic people generally require reading glasses or bifocal eyeglasses at a later age than people who are emmetropic (those who see without eyeglasses), but this benefit may be lost if they undergo LASIK. This is not a complication but an expected result of the physical laws of optics. Although there is currently no method to completely eradicate the need for reading glasses in this group, it may be minimized by performing a variation of the LASIK procedure called "slight monovision." In this procedure, which is performed exactly like distance-vision-correction LASIK, the dominant eye is set for distance vision, while the non-dominant eye is set to the prescription of the patient's reading glasses. This allows the patient to achieve a similar effect as wearing bifocals. The majority of patients tolerate this procedure very well and do not notice any shift between near and distance viewing, although a small portion of the population has trouble adjusting to the monovision effect. This can be tested for several days prior to surgery by wearing contact lenses that mimic the monovision effect. Recently, a variation of the laser ablation pattern called PresbyLASIK, has been developed to reduce or eliminate dependence on reading glasses while retaining distance vision.[citation needed]


Barraquer's early work

In the 1950s, the microkeratome and keratomileusis technique were developed in Bogotá, Colombia, by the Spanish ophthalmologist Jose Barraquer. In his clinic, he would cut thin (one hundredth of a mm thick) flaps in the cornea to alter its shape. Barraquer also investigated how much of the cornea had to be left unaltered in order to provide stable long-term results.[74] This work was followed by that of the Russian scientist, Svyatoslav Fyodorov (1920-2000), who developed radial keratotomy (RK) in the 1970s and designed the first posterior chamber implantable contact lenses (phakic intraocular lens) in the 1980s.

Application of medical laser to refractive surgery

In 1980, Rangaswamy Srinivasan, at the IBM Research laboratory, discovered that an ultraviolet excimer laser could etch living tissue, with precision and with no thermal damage to the surrounding area. He named the phenomenon "ablative photo-decomposition" (APD).[75] Five years later, in 1985, Steven Trokel at the Edward S. Harkness Eye Institute, Columbia University in New York City, published his work using the excimer laser in radial keratotomy. He wrote,

"The central corneal flattening obtained by radial diamond knife incisions has been duplicated by radial laser incisions in 18 enucleated human eyes. The incisions, made by 193 nm far-ultraviolet light radiation emitted by the excimer laser, produced corneal flattening ranging from 0.12 to 5.35 diopters. Both the depth of the corneal incisions and the degree of central corneal flattening correlated with the laser energy applied. Histopathology revealed the remarkably smooth edges of the laser incisions."[76]

Together with his colleagues, Charles Munnerlyn and Terry Clapham, Trokel founded VISX USA inc.[77] Marguerite B. MacDonald MD performed the first human VISX refractive laser eye surgery in 1989.[78]


A number of patents have been issued for several techniques related to LASIK. First patent came from German inventor Josef Bille. For example, Samuel E. Blum filed a patent application in 1982. Later, on 20 June 1989, Gholam A. Peyman was granted a US patent for LASIK (US4840175). It was,

"A method and apparatus for modifying the curvature of a live cornea via use of an excimer laser. The live cornea has a thin layer removed therefrom, leaving an exposed internal surface thereon. Then, either the surface or thin layer is exposed to the laser beam along a predetermined pattern to ablate desired portions. The thin layer is then replaced onto the surface. Ablating a central area of the surface or thin layer makes the cornea less curved, while ablating an annular area spaced from the center of the surface or layer makes the cornea more curved. The desired predetermined pattern is formed by use of a variable diaphragm, a rotating orifice of variable size, a movable mirror or a movable fiber optic cable through which the laser beam is directed towards the exposed internal surface or removed thin layer."[79]

The patents related to so-called broad-beam LASIK and PRK technologies were granted to US companies including Visx and Summit during 1990-1995 based on the fundamental US patent issued to IBM (1983) which claimed the use of UV laser for the ablation of organic tissues. In 1991, J.T. Lin was granted a US patent (US5520679) for a new technology using a flying-spot for customized LASIK that has been used worldwide. The first US patent (in 1993) using an eye-tracking device to prevent decentration in LASIK procedures was granted to S. Lai.

Implementation in U.S.

The LASIK technique was implemented in the U.S. after its successful application elsewhere. The Food and Drug Administration (FDA) commenced a trial of the excimer laser in 1989. The first enterprise to receive FDA approval to use an excimer laser for photo-refractive keratectomy was Summit Technology (founder and CEO, Dr. David Muller).[80] In 1992, under the direction of the FDA, Greek ophthalmologist Ioannis Pallikaris introduced LASIK to ten VISX centres. In 1998, the "Kremer Excimer Laser", serial number KEA 940202, received FDA approval for its singular use for performing LASIK.[81] Subsequently, Summit Technology was the first company to receive FDA approval to mass manufacture and distribute excimer lasers. VISX and other companies followed.[81]

The excimer laser that was used for the first LASIK surgeries by I.Pallikaris
Pallikaris suggested a flap of cornea could be raised by microkeratome prior to the performing of PRK with the excimer laser. The addition of a flap to PRK became known as LASIK.

Further research

Since 1991, there have been further developments such as faster lasers; larger spot areas; bladeless flap incisions; intraoperative corneal pachymetry; and "wavefront-optimized" and "wavefront-guided" techniques. However, use of the excimer laser risks damage to the retina and optic nerve. The goal of refractive surgery is to avoid permanently weakening the cornea with incisions and to deliver less energy to the surrounding tissues.

Experimental techniques

LASIK versus photorefractive keratectomy

There have been a number of studies comparing Lasik to photorefractive keratectomy (PRK). Lasik is associated with decreased inflammation and quicker recovery, but at the cost of decreased expression of nerve growth factor (NGF) at the surgical bed.[86] PRK, on the other hand, has longer recovery time with more postoperative discomfort and irritation, but rates of ocular dryness are less,[87][88][89] as only the epithelium is denuded in this approach. Lasik, on the other hand, involves creation of a corneal flap.[90] The medical literature is not uniform, however, regarding their comparative effects on ocular dryness,[91] although the majority of research supports PRK as causing less reduction in the tear film. Surgical technique has improved with time, and a more recent study has shown no difference in ocular dryness in Lasik or PRK at 12 months, as compared to pre-operative baseline, although interval assessments at months 1, 3 and 6 did show dryness in both groups.[92] Quantitative changes occurring at the eye surface are more pronounced with Lasik, but more irritation, pain and eyelid sticking are felt with PRK, which could be related to increased denervation with Lasik.[86][93] A Systematic review compared LASIK and PRK and concluded that LASIK may probably have faster recovery time and lower pain in comparison to PRK, however results may be similar in both beyond a period of one year.[94]

FDA's position

On December 6, 2011, FDA posted a video on FDA's YouTube channel and FDA's LASIK web site to help explain the risks of LASIK and other important information to potential patients. The video includes images of what certain visual symptoms may look like to patients experiencing them.[95]

Quality of life study

In October 2009, the FDA, the National Eye Institute (NEI), and the Department of Defense (DoD) launched the LASIK Quality of Life Collaboration Project (LQOLCP) to help better understand the potential risk of severe problems that can result from LASIK[96] in response to widespread reports of problems experienced by patients after LASIK laser eye surgery.[95] This project examined patient-reported outcomes with LASIK (PROWL). The project consisted of three phases: pilot phase, phase I, phase II (PROWL-1) and phase III (PROWL-2).[97] The last two phases were completed in 2014.

The results of the long-awaited LASIK Quality of Life Study were disclosed in October, 2014.

Based on study results:

  • Up to 45 percent of participants, who had no visual symptoms before surgery, reported at least one visual symptom at three months after surgery.
  • Participants who developed new visual symptoms after surgery, most often developed halos. Up to 35 percent of participants with no halos before LASIK had halos three months following surgery.
  • Up to 30 percent of participants with no symptoms of dry eyes before LASIK, reported dry eye symptoms at three months after their surgery.
  • Less than 1 percent of study participants experienced “a lot of” difficulty with or inability to do usual activities without corrective lenses because of their visual symptoms (halos, glare, et al.) after LASIK surgery.
  • Participants who were not satisfied with the LASIK surgery reported all types of visual symptoms the questionnaire measured (double vision/ghosting, starbursts, glare, and halos).[96]

At the American Academy of Ophthalmology (AAO) convention in Chicago on October 17, 2014 the FDA's director of the Division of Ophthalmic Devices, ophthalmologist Malvina B. Eydelman, in conclusion to her presentation about the LASIK study results said: "Given the large number of patients undergoing LASIK annually, dissatisfaction and disabling symptoms may occur in a significant number of patients"[98]

See also


  1. ^ a b c Finn, Peter (20 December 2012). "Medical Mystery: Preparation for surgery revealed cause of deteriorating eyesight". The Washington Post. 
  2. ^ Maguire, Stephen. "Laser Eye Surgery". The Irish Times. 
  3. ^ Lovisolo CF, Reinstein DZ; Reinstein (Nov–Dec 2005). "Phakic intraocular lenses". Survey of ophthalmology 50 (6): 549–87. PMID 16263370. doi:10.1016/j.survophthal.2005.08.011. 
  4. ^ Sanders DR, Vukich JA; Vukich (May 2003). "Comparison of Implantable Contact Lens and Laser Assisted In Situ Keratomileusis for Moderate to High Myopia". Cornea 22 (4): 324–331. PMID 12792475. doi:10.1097/00003226-200305000-00009. 
  5. ^ Lindfield, Dan; Poole, Tom. "Nd:YAG Treatment of Epithelial Ingrowth". Cataract and Refractive Surgery Today. Retrieved 12 September 2013. 
  6. ^ "A Look at LASIK Past, Present and Future". EyeNet Magazine. Retrieved 12 September 2013. 
  7. ^ "Photorefractive (laser) surgery for the correction of refractive errors" (PDF). National Health Service. March 2006. 
  8. ^
  9. ^ Saragoussi D, Saragoussi JJ; Saragoussi (September 2004). "["Lasik, PRK and quality of vision: a study of prognostic factors and a satisfaction survey"]". J Fr Ophtalmol (in French) 27 (7): 755–64. PMID 15499272. doi:10.1016/S0181-5512(04)96210-9. 
  10. ^ Bailey MD, Mitchell GL, Dhaliwal DK, Boxer Wachler BS, Zadnik K; Mitchell; Dhaliwal; Boxer Wachler; Zadnik (July 2003). "Patient satisfaction and visual symptoms after laser in situ keratomileusis". Ophthalmology 110 (7): 1371–8. PMID 12867394. doi:10.1016/S0161-6420(03)00455-X. 
  11. ^ McGhee CN, Craig JP, Sachdev N, Weed KH, Brown AD; Craig; Sachdev; Weed; Brown (April 2000). "Functional, psychological, and satisfaction outcomes of laser in situ keratomileusis for high myopia". J Cataract Refract Surg 26 (4): 497–509. PMID 10771222. doi:10.1016/S0886-3350(00)00312-6. 
  12. ^ "Study On Post-Lasik Quality Of Life"
  13. ^ a b "LASIK Eye Surgery". The New York Times - Health Guide. Retrieved 10 September 2013. 
  14. ^ [1] "New site details downsides of laser eye surgery"
  15. ^ "Better eyesight for most, but a few are seeing red.". Retrieved 2011-12-10. 
  16. ^ "World and nation: Seeing LASIK's risks clearly". 2000-10-01. Retrieved 2011-12-10. 
  17. ^ "Feature: Shuttered Sight, Shattered Lives". FWWeekly. Retrieved 2011-12-10. 
  18. ^
  19. ^ Rodemich, Karen (2010). "Former FDA official warns of LASIK risks: the man who OK'd LASIK now warns of an "epidemic" of eye problems". Review of Optometry 147 (10): 4. 
  20. ^ "LASIK Surgery: Safer Than Contacts?". 2006-10-10. Retrieved 2011-12-10. 
  21. ^ Mathers, William D.; Fraunfelder, Frederick W.; Rich, Larry F. (2006). "Risk of Lasik Surgery vs Contact Lenses". Archives of Ophthalmology 124 (10): 1510–11. doi:10.1001/archopht.124.10.1510-b. 
  22. ^ Pop M, Payette Y; Payette (January 2004). "Risk factors for night vision complaints after LASIK for myopia". Ophthalmology 111 (1): 3–10. PMID 14711706. doi:10.1016/j.ophtha.2003.09.022. 
  23. ^ Padmanabhan P, Basuthkar SS, Joseph R; Basuthkar, Subams; Joseph, Roy (Jul–Aug 2010). "Ocular aberrations after wavefront optimized LASIK for myopia". Indian Journal of Ophthalmology 58 (4): 307–312. PMC 2907032. PMID 20534921. doi:10.4103/0301-4738.64139. 
  24. ^ [2] "LASIK halo and starburst; pupil size importance". USAEyes
  25. ^ "Individual Risk Factors of Halos, Loss of Contrast Sensitivity, Glare and Starbursts after LASIK."
  26. ^ Yamane N, Miyata K, Samejima T, Hiraoka T, Kiuchi T, Okamoto F, Hirohara Y, Mihashi T, Oshika T (November 2004). "Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis". Invest. Ophthalmol. Vis. Sci. 45 (11): 3986–90. PMID 15505046. doi:10.1167/iovs.04-0629. 
  27. ^ Oshika T, Miyata K, Tokunaga T, Samejima T, Amano S, Tanaka S, Hirohara Y, Mihashi T, Maeda N, Fujikado T; Miyata; Tokunaga; Samejima; Amano; Tanaka; Hirohara; Mihashi; Maeda; Fujikado (June 2002). "Higher order wavefront aberrations of cornea and magnitude of refractive correction in laser in situ keratomileusis". Ophthalmology 109 (6): 1154–8. PMID 12045059. doi:10.1016/S0161-6420(02)01028-X. 
  28. ^ a b "Laser eye surgery". NHS Choices. 5 March 2012. Retrieved 26 October 2013. 
  29. ^ "LASIK – What are the risks and how can I find the right doctor for me?". Food and Drug Administration. 12 September 2011. Retrieved 26 October 2013. 
  30. ^ Simpson RG, Moshirfar M, Edmonds JN, Christiansen SM, Behunin N; Moshirfar; Edmonds; Christiansen; Behunin (2012). "Laser in situ keratomileusis in patients with collagen vascular disease: A review of the literature". Clinical ophthalmology (Auckland, N.Z.) 6: 1827–37. PMC 3497460. PMID 23152662. doi:10.2147/OPTH.S36690. 
  31. ^ "LASIK". 2008-11-11. Retrieved 2011-12-10. 
  32. ^ "Night vision halo after Lasik and similar laser assisted refractive surgery.". USAEyes
  33. ^ "Night vision starburst after Lasik and similar laser assisted refractive surgery.". USAEyes
  34. ^ "Pupil and Lasik Night Vision Halo - Starburst". 2010-04-16. Retrieved 2011-12-10. 
  35. ^ Majmudar, PA. "LASIK Complications." Focal Points: Clinical Modules for Ophthalmologists. American Academy of Ophthalmology. September, 2004.[dead link]
  36. ^ Carrillo C, Chayet AS, Dougherty PJ, Montes M, Magallanes R, Najman J, Fleitman J, Morales A; Chayet; Dougherty; Montes; Magallanes; Najman; Fleitman; Morales (2005). "Incidence of complications during flap creation in LASIK using the NIDEK MK-2000 microkeratome in 26,600 cases". J Refract Surg 21 (5 Suppl): S655–7. PMID 16212299. 
  37. ^ "Eye Surgery Education Council". Retrieved 2011-12-10. 
  38. ^ Tham VM, Maloney RK; Maloney (May 2000). "Microkeratome complications of laser in situ keratomileusis". Ophthalmology 107 (5): 920–4. PMID 10811084. doi:10.1016/S0161-6420(00)00004-X. 
  39. ^ a b Vesaluoma M, Pérez-Santonja J, Petroll WM, Linna T, Alió J, Tervo T; Pérez-Santonja; Petroll; Linna; Alió; Tervo (1 February 2000). "Corneal stromal changes induced by myopic LASIK". Invest. Ophthalmol. Vis. Sci. 41 (2): 369–76. PMID 10670464. 
  40. ^ "Diffuse Lamellar Keratitis - DLK and Lasik, All-Laser Lasik, Sands of Sahara". 2010-04-12. Retrieved 2011-12-10. 
  41. ^ a b c d Sun L, Liu G, Ren Y, Li J, Hao J, Liu X, Zhang Y; Liu; Ren; Li; Hao; Liu; Zhang (2005). "Efficacy and safety of LASIK in 10,052 eyes of 5081 myopic Chinese patients". J Refract Surg 21 (5 Suppl): S633–5. PMID 16212294. 
  42. ^ "Ectasia After LASIK". American Academy of Ophthalmology. 
  43. ^ Cheng AC, Rao SK, Leung GY, Young AL, Lam DS; Rao; Leung; Young; Lam (May 2006). "Late traumatic flap dislocations after LASIK". J Refract Surg 22 (5): 500–4. PMID 16722490. 
  44. ^ a b Ruiz-Moreno JM, Alió JL; Alió (2003). "Incidence of retinal disease following refractive surgery in 9,239 eyes". J Refract Surg 19 (5): 534–47. PMID 14518742. 
  45. ^ Suarez E, Torres F, Vieira JC, Ramirez E, Arevalo JF; Torres; Vieira; Ramirez; Arevalo (October 2002). "Anterior uveitis after laser in situ keratomileusis". J Cataract Refract Surg 28 (10): 1793–8. PMID 12388030. doi:10.1016/S0886-3350(02)01364-0. 
  46. ^ Boes DA, Omura AK, Hennessy MJ; Omura; Hennessy (December 2001). "Effect of high-altitude exposure on myopic laser in situ keratomileusis". J Cataract Refract Surg 27 (12): 1937–41. PMID 11738908. doi:10.1016/S0886-3350(01)01074-4. 
  47. ^ Dimmig JW, Tabin G; Tabin (2003). "The ascent of Mount Everest following laser in situ keratomileusis". J Refract Surg 19 (1): 48–51. PMID 12553606. 
  48. ^ Erie JC, McLaren JW, Hodge DO, Bourne WM; McLaren; Hodge; Bourne (2005). "Long term corneal keratocyte deficits after photorefractive keratectomy and laser in situ keratomileusis" (PDF). Trans Am Ophthalmol Soc 103: 56–66; discussion 67–8. PMC 1447559. PMID 17057788. 
  49. ^ Hammer T, Heynemann M, Naumann I, Duncker GI; Heynemann; Naumann; Duncker (March 2006). "Correction and induction of high-order aberrations after standard and wavefront-guided LASIK and their influence on the postoperative contrast sensitivity". Klin Monatsbl Augenheilkd (in German) 223 (3): 217–24. PMID 16552654. doi:10.1055/s-2005-858864. 
  50. ^ Alió JL, Montés-Mico R; Montés-Mico (February 2006). "Wavefront-guided versus standard LASIK enhancement for residual refractive errors". Ophthalmology 113 (2): 191–7. PMID 16378639. doi:10.1016/j.ophtha.2005.10.004. 
  51. ^ Caster AI, Hoff JL, Ruiz R; Hoff; Ruiz (2005). "Conventional vs wavefront-guided LASIK using the LADARVision4000 excimer laser". J Refract Surg 21 (6): S786–91. PMID 16329381. 
  52. ^
  53. ^ "US FDA/CDRH: LASIK - What are the risks and how can I find the right doctor for me?". 2008-11-11. Retrieved 2011-12-10. 
  54. ^ "Lasik and Contacts". 2010-04-12. Retrieved 2011-12-10. 
  55. ^ "Age Issues For Lasik, All-Laser Lasik, PRK, LASEK, Epi-Lasik, CK, P-IOL, RLE, etc". 2010-04-12. Retrieved 2011-12-10. 
  56. ^
  57. ^ "All-Laser Lasik - iLasik - IntraLasik". 2010-04-12. Retrieved 2011-12-10. 
  58. ^ "Patent: ultraviolet solid state laser". Retrieved 2011-12-10. 
  59. ^ Dimitri T. Azar , Damien Gatinel (2007). Refractive surgery (2nd ed.). Philadelphia: Mosby Elsevier. ISBN 9780323035996. 
  60. ^ "IROC . Institut für Refraktive und Ophthalmo-Chirurgie". 2005-04-15. Retrieved 2011-12-10. [dead link]
  61. ^ a b Walsh MJ. Is the future of refractive surgery based on corneal topography or wavefront? "Ocular Surgery News". August 1, 2000, page 26.
  62. ^ a b Walsh MJ. Wavefront is showing signs of success, but can it do it alone? Ocular Surgery News. September 1, 2000, page 41.
  63. ^ a b EW Dialogue: the future of wavefront refraction as a diagnostic tool. "EyeWorld". May 2000, pages 64 and 65.
  64. ^ a b c d Alpins NA (2002). "Wavefront technology: A new advance that fails to answer old questions on corneal vs. Refractive astigmatism correction". Journal of refractive surgery 18 (6): 737–9. PMID 12458868. 
  65. ^ a b Alpins N, Stamatelatos G; Stamatelatos (2008). "Clinical outcomes of laser in situ keratomileusis using combined topography and refractive wavefront treatments for myopic astigmatism". Journal of cataract and refractive surgery 34 (8): 1250–9. PMID 18655973. doi:10.1016/j.jcrs.2008.03.028. 
  66. ^ Alpins N, Stamatelatos G; Stamatelatos (2007). "Customized photoastigmatic refractive keratectomy using combined topographic and refractive data for myopia and astigmatism in eyes with forme fruste and mild keratoconus". Journal of cataract and refractive surgery 33 (4): 591–602. PMID 17397730. doi:10.1016/j.jcrs.2006.12.014. 
  67. ^ American Academy of Ophthalmology. "Refractive Laser Surgery: An In-Depth Look at LASIK and Brief Overview of PRK, Epi-LASIK, and LASEK: A Science Writer’s Guide". Accessed January 29, 2012.
  68. ^ Abbott Medical Optics website. "WaveScan WaveFront System". Accessed August 15, 2012.
  69. ^ Emory Healthcare website. "Wavefront technology". Accessed August 15, 2012.
  70. ^ Croes K. AllAboutVision website. "Custom LASIK or wavefront LASIK: individualized vision correction". Accessed August 15, 2012.
  71. ^ Liz Segre. "Cost of LASIK eye surgery and other corrective procedures". Retrieved 2012-08-15. 
  72. ^ Fares U, Suleman H, Al-Aqaba MA, Otri AM, Said DG, Dua HS; Suleman; Al-Aqaba; Otri; Said; Dua (2011). "Efficacy, predictability, and safety of wavefront-guided refractive laser treatment: Metaanalysis". Journal of Cataract & Refractive Surgery 37 (8): 1465–1475. PMID 21782089. doi:10.1016/j.jcrs.2011.02.029. 
  73. ^ Sue Campbell. "Air Force aims for ‘weapons-grade’ vision". Archived from the original on 2012-07-28. Retrieved 2011-12-10. 
  74. ^ Troutman RC, Swinger C; Swinger (1978). "Refractive keratoplasty: keratophakia and keratomileusis". Trans Am Ophthalmol Soc. 76: 329–39. PMC 1311630. PMID 382579. 
  75. ^ "Prize for the Industrial Application of Physics Winner - American Institute of Physics". Retrieved 2011-12-10. 
  76. ^ Cotliar AM, Schubert HD, Mandel ER, Trokel SL; Schubert; Mandel; Trokel (Feb 1985). "Excimer laser radial keratotomy". Ophthalmology 92 (2): 206–8. PMID 3982798. doi:10.1016/s0161-6420(85)34052-6. 
  77. ^ [3] VISX USA Technology (Last accessed 4th June, 2012)
  78. ^ McDonald M.B., Kaufman H.E., Frantz J.M., Shofner S, Salmeron B, Klyce S.D.; Kaufman; Frantz; Shofner; Salmeron; Klyce (1989). "Excimer laser ablation - human eye". Arch Ophthalmol 107 (5): 641–642. PMID 2719572. doi:10.1001/archopht.1989.01070010659013. 
  79. ^ [4] Patents at (last accessed 4th June, 2012)
  80. ^ "FDA-Approved Lasers for PRK and Other Refractive Surgeries". Retrieved 2011-12-10. 
  81. ^ a b "List of FDA-Approved Lasers for LASIK". Retrieved 2011-12-10. 
  82. ^ [5]
  83. ^ " > May 2010 > Industry interview: Aiming to change the face of refractive surgery—again". 2010-04-16. Retrieved 2011-12-10. 
  84. ^ [6] IntraCOR for presbyopia.
  85. ^ [7] IntraCOR for myopia
  86. ^ a b Lee HK, Lee KS, Kim HC, Lee SH, Kim EK; Lee; Kim; Lee; Kim (2005). "Nerve Growth Factor Concentration and Implications in Photorefractive Keratectomy vs Laser in Situ Keratomileusis". American Journal of Ophthalmology 139 (6): 965–971. PMID 15953424. doi:10.1016/j.ajo.2004.12.051. 
  87. ^ Sridhar MS, Rao SK, Vajpayee RB, Aasuri MK, Hannush S, Sinha R; Rao; Vajpayee; Aasuri; Hannush; Sinha (2002). "Complications of laser-in-situ-keratomileusis". Indian journal of ophthalmology 50 (4): 265–282. PMID 12532491. 
  88. ^ Lee JB, Ryu CH, Kim J, Kim EK, Kim HB; Ryu; Kim; Kim; Kim (2000). "Comparison of tear secretion and tear film instability after photorefractive keratectomy and laser in situ keratomileusis". Journal of cataract and refractive surgery 26 (9): 1326–1331. PMID 11020617. doi:10.1016/S0886-3350(00)00566-6. 
  89. ^ Mrukwa-Kominek E, Stala P, Gierek-Ciaciura S, Lange E; Stala; Gierek-Ciaciura; Lange (2006). "Assessment of tears secretion after refractive surgery". Klinika oczna 108 (1–3): 73–77. PMID 16883946. 
  90. ^ Alió JL, Pérez-Santonja JJ, Tervo T, Tabbara KF, Vesaluoma M, Smith RJ, Maddox B, Maloney RK; Pérez-Santonja; Tervo; Tabbara; Vesaluoma; Smith; Maddox; Maloney (2000). "Postoperative inflammation, microbial complications, and wound healing following laser in situ keratomileusis". Journal of refractive surgery (Thorofare, N.J. : 1995) 16 (5): 523–538. PMID 11019867. 
  91. ^ Pisella PJ, Godon C, Auzerie O, Baudouin C; Godon; Auzerie; Baudouin (2002). "Influence of corneal refractive surgery on the lacrymal film". Journal francais d'ophtalmologie 25 (4): 416–422. PMID 12011749. 
  92. ^ Murakami Y, Manche EE; Manche (2012). "Prospective, Randomized Comparison of Self-reported Postoperative Dry Eye and Visual Fluctuation in LASIK and Photorefractive Keratectomy". Ophthalmology 119 (11): 2220–2224. PMID 22892151. doi:10.1016/j.ophtha.2012.06.013. 
  93. ^ Hovanesian JA, Shah SS, Maloney RK; Shah; Maloney (2001). "Symptoms of dry eye and recurrent erosion syndrome after refractive surgery". Journal of cataract and refractive surgery 27 (4): 577–584. PMID 11311627. doi:10.1016/S0886-3350(00)00835-X. 
  94. ^ Shortt AJ, Allan BD, Evans JR; Allan; Evans (Jan 31, 2013). "Laser-assisted in-situ keratomileusis (LASIK) versus photorefractive keratectomy (PRK) for myopia". Cochrane database of systematic reviews (Online) 1: CD005135. PMID 23440799. doi:10.1002/14651858.CD005135.pub3. 
  95. ^ a b | publisher=U.S Food and Drug Administration
  96. ^ a b | publisher=U.S Food and Drug Administration|accessdate=28 November 2014
  97. ^
  98. ^ LASIK Quality of Life Collaboration Project: Study Results Presented at the Refractive Surgery Subspecialty Day of the American Academy of Ophthalmology (AAO) on October 17, 2014 (PDF - 1.8MB)

External links

Lua error in Module:Authority_control at line 346: attempt to index field 'wikibase' (a nil value).