Open Access Articles- Top Results for List of human diseases associated with infectious pathogens

List of human diseases associated with infectious pathogens

This article is about diseases with possible (but as yet unconfirmed) infectious microbial causes. For a list of diseases with proven infectious causes, see List of infectious diseases.

This article provides a list of diseases with possible (but unconfirmed) infectious etiologies.

Many chronic diseases are linked or associated with infectious pathogens.[1][2] A disease is said to be linked or associated with an infectious pathogen when that pathogen is found more frequently in patients with the disease than in healthy controls. Often, infectious pathogens associated with a disease may be suspected of playing a causal role in that disease — and some scientists believe a substantial portion of chronic diseases may in part be caused by infectious agents[3] — though association alone does not automatically prove causality (because correlation does not imply causation).

For an infectious pathogenic microbe that has been noted to frequently accompany a disease, there are several logical possibilities that can explain this observed association:
  • The pathogen is an "innocent bystander" that plays no causal role in the etiology of the disease, but for some reason is more prevalent in patients with the disease (perhaps because the disease compromises the immune response, for example).
  • The pathogen predisposes to disease development (increases the risk of getting the disease), but the pathogen does not cause the disease (for example, genital herpes increases the risk of acquiring HIV).[4]
  • The pathogen is a necessary, but not sufficient, cause of the disease: in other words, the pathogen can cause the disease, but does so only in combination with one or more other causal factors (such as host genetic factors, or toxin exposure).
  • The pathogen is a direct and singular cause of the disease, but this causality has yet to be proven.

Determining whether a pathogen plays a causal role in a chronic disease is often difficult[5] for the following reasons:

  • The time between contracting an infectious pathogen and the appearance of the first disease symptoms can be lengthy, sometimes decades.
  • An infectious pathogen may not cause disease in every person.
  • An infection may be asymptomatic in its acute phase (when first contracted), and so go unnoticed; symptoms may only appear much later — in the form of a chronic disease.
  • Sometimes, only specific strains of a pathogen are linked to a disease; other strains of the same microbe may be harmless.
  • A pathogen may precipitate the disease only in combination with one or more other causal factors.
  • There may be more than one pathogen that can precipitate a given disease.
  • A given pathogen may not always cause the same disease — infection with it may lead to one of several different diseases.
  • There may be pathogens that are not readily detectable that play a causal role in a disease.
  • For obvious ethical reasons, you cannot inoculate infectious pathogens into humans to see if these do cause the disease or not.
  • A pathogenic microbe may cause disease by relatively easy to track direct means, such as by infecting and destroying cells; or may cause disease via more complex and convoluted indirect means, such as through the damage created by inflammatory cytokines or autoimmune processes that are induced by the microbial infection (for example, tuberculosis infection induces an inflammatory cytokine that then itself causes severe tissue damage).[6][7]
  • A pathogenic microbe may not necessarily be present in the diseased tissues or organs (bacterial toxins for example can travel and damage tissues at sites distant from the infection site; and inflammatory or autoimmune processes precipitated by infectious pathogens can also act at tissue sites far removed from the infection).

In spite of the difficulties in obtaining proof of causality, evolutionary biologist Paul W. Ewald and physicist Gregory M. Cochran are noted for their assertion that many common chronic diseases of currently unknown etiology are likely caused by chronic low-level microbial infection,[8][9] countering the prevailing view that genes are predominantly responsible for the development of chronic disease. Ewald and Cochran support their thesis with the logic of evolutionary biology, with Ewald explaining that: "chronic diseases, if they are common and damaging, must be powerful eliminators of any genetic instruction that may cause them."[10]

In other words, any disease-causing gene that reduces survival and reproduction will eliminate itself over a number of generations, just by evolutionary pressures; therefore such genetic diseases are self-extinguishing. Ewald says the only genetic diseases that will persist are those that provide a compensating benefit. For example, genes that encode for sickle cell anemia disease are maintained and persist down generations, as these genes also protect against malaria, which kills millions worldwide each year.[10]

Infectious pathogens are one of several potential causes of disease; other causal factors include: environmental toxins, certain types of radiation exposure, diet and lifestyle factors, stress, genetics, and epigenetics. All these factors are generally explored as potential causes of a disease.

Diseases may also be multifactorial,[11] such that the disease only manifests when multiple causal factors occur in combination. For example: in a murine model, Crohn's disease can be precipitated by a norovirus, but only when both a specific gene variant is present and a certain toxin has damaged the gut.[12] Thus a pathogen's causal role in a disease may well be contingent upon several other causal factors.

Infectious pathogen-associated diseases include many of the most common and costly[13] chronic illnesses. About 70% of all deaths in the United States result from chronic diseases,[5] with the treatment of chronic diseases accounting for 75% of all US healthcare costs (amounting to $1.7 trillion in 2009).[14]

List of diseases associated with infectious Bacteria

In the list of diseases associated with infectious pathogens given below, bear in mind that there is no definitive proof that the associated pathogens do play a causal role in the disease, just a possibility that they might. Further research is required to determine whether or not these pathogens participate causally in their associated diseases. Note that this list covers some of the most common human diseases associated with infectious pathogens, but it is not intended to be a comprehensive list.

Alzheimer's disease Alzheimer's disease is associated with the bacteria Chlamydia pneumoniae[15] and Helicobacter pylori,[16] and with the protozoan parasite Toxoplasma gondii.[17] Herpes simplex virus 1 is associated with Alzheimer's disease in individuals who possess the APOE-4 form of the APOE gene (APOE-4 enables the herpes virus to enter the brain).[18]
Amyotrophic lateral sclerosis Amyotrophic lateral sclerosis, the most common of five forms of motor neuron disease, is associated with echovirus (an enterovirus) infection of the central nervous system,[19] and with retrovirus[20] activity (it is not known whether this retrovirus activity arises from a human endogenous retrovirus, or from an exogenous retrovirus).
Anorexia nervosa Infection with Borrelia[21] species bacteria is associated with anorexia nervosa. In rare cases, anorexia nervosa may arise after infection with Streptococcus[22] species bacteria. Anorexia (which is distinct from anorexia nervosa) is associated with the protozoan parasite Dientamoeba fragilis.[23]
Anxiety disorder Anxiety is associated with cytomegalovirus,[24] and the bacterium Helicobacter pylori.[25]
Asthma Asthma is associated with rhinovirus, human respiratory syncytial virus,[26] and the bacterium Chlamydia pneumoniae.[27] Chlamydia pneumoniae is particularly associated with adult-onset asthma.[28]
Atherosclerosis Atherosclerosis is associated with the bacterium Chlamydia pneumoniae.[29][30]
Attention deficit hyperactivity disorder Attention deficit hyperactivity disorder (ADHD) and learning disorders are associated with the bacteria Borrelia burgdorferi and Streptococcus, and with HIV and enterovirus 71. Febrile seizures due to human herpesvirus 6 or influenza A are a risk factor for ADHD. Viral infections during pregnancy, at birth, and in early childhood are risk factors for ADHD.[31]
Autism Autism is linked to congenital infection with rubella virus or cytomegalovirus.[32][33] Clostridia bacteria species are associated with autism (these bacteria are present in greater numbers in the guts of autistic children).[34]
Autoimmune diseases Autoimmune diseases are strongly associated with enteroviruses such as Coxsackie B virus.[35] Autoimmune diseases are also associated with Epstein-Barr virus,[36] cytomegalovirus,[37] parvovirus B19,[38] and HIV,[39] and the bacterium Mycobacterium tuberculosis.[40] Autoimmune thyroid disease is associated with Epstein-Barr virus[41] and Helicobacter pylori.[42]
Bipolar disorder Bipolar disorder is associated with bornavirus,[43] and with Borrelia[21] species bacteria. The level of cognitive impairment in bipolar disorder is associated with herpes simplex virus 1.[44]
Cancer Some estimates currently attribute 15% to 20% of all cancers to infectious pathogen causes.[45][46] In future, this percentage may be revised upwards if the pathogens currently associated with cancers (such as those listed below) are proven to actually cause those cancers. (Note: for the sake of completeness, some infectious pathogens known to cause cancers are included in the list, in addition to the infectious pathogens associated with cancers.)

Adrenal tumor is associated with BK virus and simian virus 40.[47]
Anal cancer is associated with human papillomaviruses.[48]
Bladder cancer can be caused by Schistosoma helminths.[49]
Brain tumor. Glioblastoma multiforme is associated with cytomegalovirus,[50] BK virus, JC virus, and simian virus 40.[51]
Breast cancer is associated with mouse mammary tumor virus, Epstein-Barr virus, and human papillomaviruses.[52]
Carcinoid tumors are associated with enterovirus infections.[53]
Cervical cancer can be caused by human papillomaviruses.[54]
Colorectal cancer is associated with the bacteria Helicobacter pylori, Streptococcus bovis and Fusobacterium nucleatum,[55] with human papillomaviruses,[56] and with the helminth Schistosoma japonicum.[57] JC virus may be a risk factor for colorectal cancer.[58]
Gallbladder cancer is associated with the bacterium Salmonella typhi.[59]
Hodgkin's lymphoma is associated with Epstein-Barr virus,[60] hepatitis C virus,[61] and HIV.[62]
Kaposi's Sarcoma can be caused by Kaposi's sarcoma herpesvirus and HIV.
Liver cancer. Hepatocellular carcinoma can be caused by hepatitis B virus, hepatitis C virus,[63] and by the helminth Schistosoma japonicum.[64]
Lung cancer is associated with the bacterium Chlamydia pneumoniae,[65] with human papillomaviruses, and with Merkel cell polyomavirus.[66]
Leukemia. Adult T-cell leukemia can be caused by human T-cell leukemia virus-1.
Mesothelioma is associated with simian virus 40,[67] especially in conjunction with asbestos exposure.
Nasopharyngeal carcinoma can be caused by Epstein-Barr virus.
Non-Hodgkin lymphoma is associated with HIV and simian virus 40.[68]
Oropharyngeal cancer can be caused by human papillomaviruses.
Ovarian cancer is associated with mumps virus.
Pancreatic cancer is associated with hepatitis B virus and the bacterium Helicobacter pylori.
Prostate cancer is associated with xenotropic murine leukemia virus-related virus and BK virus.
Skin neoplasm is associated with human papillomaviruses.
Squamous cell carcinoma is associated with human papillomaviruses.
Stomach cancer is associated with the bacterium Helicobacter pylori.
Thyroid cancer is associated with simian virus 40.

Chronic fatigue syndrome Chronic fatigue syndrome (also known as myalgic encephalomyelitis) is associated with enteroviruses (such as Coxsackie B virus),[69][70] human herpesvirus 6 variant A,[71] human herpesvirus 7,[72] and parvovirus B19.[73][74] The bacteria Coxiella burnetii[75] and Chlamydia pneumoniae[76] are known causes of chronic fatigue syndrome (antibiotics can cure these bacterial forms of chronic fatigue syndrome).
Chronic obstructive pulmonary disease Chronic obstructive pulmonary disease (which includes both chronic bronchitis and emphysema) is associated with Chlamydia pneumoniae[77] and Epstein-Barr virus.[78]
Crohn's disease One study found ileocecal Crohn's disease is associated with viral species from the enterovirus genus (but note that all the study cohort with ileocecal Crohn's disease had disease-associated mutations in either their NOD2 or ATG16L1 genes).[79] Crohn's disease is associated with Mycobacterium avium subspecies paratuberculosis.[80] In a murine model, Crohn's disease is precipitated by the norovirus CR6 strain,[12][81] but only in combination with a variant of the Crohn’s susceptibility gene ATG16L1, and chemical toxic damage to the gut. In other words, in this mouse model, Crohn’s is precipitated only when these three causal factors (virus, gene, and toxin) act in combination.
Coronary heart disease Coronary heart disease is associated with herpes simplex virus 1 and the bacterium Chlamydia pneumoniae.[82]
Dementia Dementia is associated with herpes simplex virus type 1, herpes simplex virus type 2, cytomegalovirus, West Nile virus, bornavirus, and HIV. Dementia is also associated with the helminth Taenia solium (pork tapeworm), and with Borrelia[21] species bacteria.
Depression Depression is associated with cytomegalovirus[24] and West Nile virus,[83] and the protozoan parasite Toxoplasma gondii.[84] It is thought that depression may be precipitated by the effect of immune signals (such as pro-inflammatory cytokines) reaching the brain from infections located in the peripheries of the body.[85][86]

Major depressive disorder is associated with bornavirus,[43] as well as Bartonella[87] and Borrelia[21] species bacteria.
Seasonal affective disorder is associated with Epstein-Barr virus.[88]

Diabetes mellitus type 1 Diabetes mellitus type 1 is associated with viral species from the enterovirus genus,[89][90] specifically echovirus 4[91] and Coxsackie B virus (the latter it is thought may infect and destroy the insulin producing beta-cells in the pancreas and also damage these cells via indirect autoimmune mechanisms).[92][93] One study found Coxsackie B1 virus associated with a higher risk of the beta cell autoimmunity that portends type 1 diabetes; though Coxsackie B3 and B6 viruses were found to be associated with a reduced risk of such autoimmunity (possibly due to immune cross-protection against Coxsackie B1 virus).[94] In boys, human parechovirus infection has been linked to a subsequent appearance of diabetes-associated autoantibodies.[95]
Diabetes mellitus type 2 Diabetes mellitus type 2 is associated with cytomegalovirus,[96] hepatitis C virus,[97] enteroviruses,[90] and Ljungan virus.[98]
Dilated cardiomyopathy Dilated cardiomyopathy is associated with enteroviruses such as Coxsackie B virus.[99]
Epilepsy Epilepsy is associated with human herpesvirus 6.[100]
Guillain–Barré syndrome Guillain–Barré syndrome is associated with the bacterium Campylobacter jejuni, and with the viruses cytomegalovirus[101] and enterovirus.[102]
Irritable bowel syndrome Irritable bowel syndrome (IBS) is associated with the bacteria enteroaggregative Escherichia coli[103] and Mycobacterium avium subspecies paratuberculosis,[104] the protozoan parasite Giardia lamblia,[105] and pathogenic strains of the protozoan parasite Blastocystis hominis.[106] Irritable bowel syndrome in those with HIV is associated with the protozoan Dientamoeba fragilis.[23]
Low back pain Lower back pain is associated with a spinal disc infection with anaerobic bacteria, especially the bacterium Propionibacterium acnes.[107][108]
Lupus Lupus is associated with the viruses parvovirus B19,[109] Epstein-Barr virus,[110] and cytomegalovirus.[111]
Metabolic syndrome Metabolic syndrome is associated with the bacteria Chlamydia pneumoniae[112] and Helicobacter pylori, as well as the viruses cytomegalovirus and herpes simplex virus 1.[113]
Multiple sclerosis Multiple sclerosis, a demyelinating disease, is associated with Epstein-Barr virus[114] (and strongly associated with certain genetic variants of this virus),[115] human herpesvirus 6,[116] varicella zoster virus,[117] and the bacterium Chlamydia pneumoniae.[118]
Myocardial infarction Myocardial infarction (heart attack) is associated with Chlamydia pneumoniae,[119] cytomegalovirus[120] and Coxsackie B virus (an enterovirus).[121] (Coxsackie B virus is also associated with sudden unexpected death due to myocarditis).[122]
Obesity Obesity is associated with adenovirus 36, which is found in 30% of obese people, but only in 11% of non-obese people.[123][124] It has further been demonstrated that animals experimentally infected with adenovirus 36 (or adenovirus 5, or adenovirus 37) will develop increased obesity.[125] Adenovirus 36 induces obesity by infecting fat cells (adipocytes), wherein the expression of the adenovirus E4orf1 gene turns on both the cell's fat producing enzymes and also instigates the generation of new fat cells.[126] Evidence suggests that obesity can be a viral disease, and that the worldwide obesity epidemic that began in the 1980s may be in part due to viral infection.[127][128]

Obesity is also associated with higher gut levels of certain Firmicutes bacteria in relation to Bacteroidetes bacteria. Overweight individuals tend have more Firmicutes bacteria (such as Clostridium, Staphylococcus, Streptococcus, and Helicobacter pylori) in their gut, whereas normal weight individuals tend have more Bacteroidetes bacteria.[129]

Obsessive–compulsive disorder Obsessive–compulsive disorder is associated with Streptococcus[130] and Borrelia[21] species bacteria.
Panic disorder Panic disorder is associated with Borrelia[21] and Bartonella[87] species bacteria.[87]
Parkinson's disease Parkinson's disease is associated with influenza A virus,[131] as well as the protozoan parasite Toxoplasma gondii.[132]
Psoriasis Psoriasis is associated with a Helicobacter pylori trigger.[133]
Rheumatoid arthritis Rheumatoid arthritis is associated with parvovirus B19.[109] Antibodies to Borrelia outer surface protein A are associated with rheumatoid arthritis.[134]
Sarcoidosis Sarcoidosis is associated with Mycobacteria[135] species, and the bacteria Helicobacter pylori[136] and Borrelia burgdorferi.[137]
Schizophrenia Schizophrenia is associated with bornavirus,[43] the bacterium Chlamydia trachomatis,[138] as well as Borrelia species bacteria.[21] Schizophrenia is also linked to neonatal infection with Coxsackie B virus (an enterovirus), which one study found carries an increased risk of adult onset schizophrenia.[139] Prenatal exposure to influenza virus in the first trimester of pregnancy increases the risk of schizophrenia by 7-fold.[140]
Stroke Stroke is associated with the bacteria Chlamydia pneumoniae,[141] Helicobacter pylori,[142] Mycobacterium tuberculosis,[143] and Mycoplasma pneumoniae,[144] as well as the virus varicella zoster virus[145] and the fungus Histoplasma.[146]
Thromboangiitis obliterans Thromboangiitis obliterans is associated with Rickettsia species bacteria.[147]
Tourette syndrome Tourette syndrome is associated with the bacterium Streptococcus.[130] Aggravating or contributory microbes in Tourette's may include the bacteria Mycoplasma pneumoniae,[148] Chlamydia pneumoniae, Chlamydia trachomatis, and the protozoan parasite Toxoplasma gondii.[149]
Vasculitis Vasculitis is associated with HIV, parvovirus B19,[109] and hepatitis B virus. The hepatitis C virus is an established cause of vasculitis.

Cross reference: Pathogens and their associated diseases

For some selected pathogens, the set of their disease associations is shown in the bar graphs below. For each bar below, the pathogen in question has been found more frequently in patients with the listed diseases than it has in healthy controls — but it has not been proven that the pathogen plays any causal role in the listed diseases; though usually investigations to examine whether it might participate causally are ongoing. By contrast, the diseases below enclosed in brackets ( ) indicate that the pathogen is a proven cause of that disease.

Epstein-Barr virus
Hepatitis B virus
Hepatitis C virus
Herpes simplex virus
Human herpesvirus 6
Influenza A
Parvovirus B19
Chlamydia pneumoniae
Helicobacter pylori
Mycobacterium tuberculosis
Toxoplasma gondii

See also

Further reading

Popular science articles and books

Academic articles


  1. ^ Institute of Medicine (US) Forum on Microbial Threats (1 July 2004). "PREFACE". In Knobler, Stacey L; O'Connor, Siobhán; Lemon, Stanley M et al. The Infectious Etiology of Chronic Diseases: Defining the Relationship, Enhancing the Research, and Mitigating the Effects: Workshop Summary. National Academies Press. pp. xi–xii. ISBN 978-0-309-08994-4. 
  2. ^ O'Connor, Siobhán M.; Taylor, Christopher E.; Hughes, James M. (2006). "Emerging Infectious Determinants of Chronic Diseases". Emerging Infectious Diseases 12 (7): 1051–7. PMC 3291059. PMID 16836820. doi:10.3201/eid1207.060037. 
  3. ^ Institute of Medicine (US) Forum on Microbial Threats (1 July 2004). "SUMMARY AND ASSESSMENT". In Knobler, Stacey L; O'Connor, Siobhán; Lemon, Stanley M et al. The Infectious Etiology of Chronic Diseases: Defining the Relationship, Enhancing the Research, and Mitigating the Effects: Workshop Summary. National Academies Press. p. 2. ISBN 978-0-309-08994-4. 
  4. ^ Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ; Weiss; Glynn; Cross; Whitworth; Hayes (2006). "Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies". AIDS 20 (1): 73–83. PMID 16327322. doi:10.1097/01.aids.0000198081.09337.a7. 
  5. ^ a b Institute of Medicine (US) Forum on Microbial Threats (1 July 2004). "OVERVIEW". In Knobler, Stacey L; O'Connor, Siobhán; Lemon, Stanley M et al. The Infectious Etiology of Chronic Diseases: Defining the Relationship, Enhancing the Research, and Mitigating the Effects: Workshop Summary. National Academies Press. pp. 13–14. ISBN 978-0-309-08994-4. 
  6. ^ Mootoo A, Stylianou E, Arias MA, Reljic R; Stylianou; Arias; Reljic (March 2009). "TNF-alpha in tuberculosis: a cytokine with a split personality". Inflamm Allergy Drug Targets 8 (1): 53–62. PMID 19275693. doi:10.2174/187152809787582543. 
  7. ^ Sfriso P, Ghirardello A, Botsios C et al. (March 2010). "Infections and autoimmunity: the multifaceted relationship". J. Leukoc. Biol. 87 (3): 385–95. PMID 20015961. doi:10.1189/jlb.0709517. 
  8. ^ Ewald, Paul W. (2002). Plague Time: The New Germ Theory of Disease. Anchor. p. 3. ISBN 0-385-72184-6. Bad genes and bad environments have often been falsely accused, or, at least they have taken more than their share of the blame. Viruses and bacteria are the primary offenders. 
  9. ^ Cochran, Gregory M.; Ewald, Paul W.; Cochran, Kyle D. (2000). "Infectious Causation of Disease: An Evolutionary Perspective". Perspectives in Biology and Medicine 43 (3): 406–48. PMID 10893730. doi:10.1353/pbm.2000.0016. 
  10. ^ a b Ewald, Paul W. (2002). Plague Time: The New Germ Theory of Disease. Anchor. p. 56. ISBN 0-385-72184-6. Chronic diseases, if they are common and damaging, must be powerful eliminators of any genetic instruction that may cause them. Only if a genetic instruction provides some compensating benefit can the disease it causes persist as a common ailment. 
  11. ^ Institute of Medicine (US) Forum on Microbial Threats (1 July 2004). "DEFINING THE RELATIONSHIP". In Knobler, Stacey L; O'Connor, Siobhán; Lemon, Stanley M et al. The Infectious Etiology of Chronic Diseases: Defining the Relationship, Enhancing the Research, and Mitigating the Effects: Workshop Summary. National Academies Press. p. 4. ISBN 978-0-309-08994-4. 
  12. ^ a b Cadwell, Ken; Patel, Khushbu K.; Maloney, Nicole S.; Liu, Ta-Chiang; Ng, Aylwin C.Y.; Storer, Chad E.; Head, Richard D.; Xavier, Ramnik et al. (June 2010). "Virus-Plus-Susceptibility Gene Interaction Determines Crohn's Disease Gene Atg16L1 Phenotypes in Intestine". Cell 141 (7): 1135–45. PMC 2908380. PMID 20602997. doi:10.1016/j.cell.2010.05.009. 
  13. ^ Kockaya, Guvenc; Wertheimer, Albert (2010). "What are the top most costly diseases for USA? The alignment of burden of illness with prevention and screening expenditures". Health 02 (10): 1174–8. doi:10.4236/health.2010.210172. 
  14. ^ "The Role of Chronic Disease in Higher Health Costs and Lower U.S. Economic Growth". Almanac of Chronic Disease (PDF). Partnership to Fight Chronic Disease. 2009. p. 23. 
  15. ^ Shima, Kensuke; Kuhlenbäumer, Gregor; Rupp, Jan (2010). "Chlamydia pneumoniae infection and Alzheimer’s disease: a connection to remember?". Medical Microbiology and Immunology 199 (4): 283–9. PMID 20445987. doi:10.1007/s00430-010-0162-1. 
  16. ^ Kountouras, Jannis; Boziki, Marina; Gavalas, Emmanuel; Zavos, Christos; Grigoriadis, Nikolaos; Deretzi, Georgia; Tzilves, Dimitrios; Katsinelos, Panagiotis et al. (2009). "Eradication of Helicobacter pylori may be beneficial in the management of Alzheimer's disease". Journal of Neurology 256 (5): 758–67. PMID 19240960. doi:10.1007/s00415-009-5011-z. 
  17. ^ Kusbeci, Ozge Yilmaz; Miman, Ozlem; Yaman, Mehmet; Aktepe, Orhan Cem; Yazar, Suleyman (2011). "Could Toxoplasma gondii Have any Role in Alzheimer Disease?". Alzheimer Disease & Associated Disorders 25 (1): 1–3. PMID 20921875. doi:10.1097/WAD.0b013e3181f73bc2. 
  18. ^ Itzhaki, RF; Wozniak, MA (2008). "Herpes simplex virus type 1 in Alzheimer's disease: the enemy within". Journal of Alzheimer's disease 13 (4): 393–405. PMID 18487848. 
  19. ^ Corcia, P; Giraud, P; Guennoc, AM; De Toffol, B; Autret, A (2003). "Acute motor axonal neuropathy, enterovirus and Amyotrophic lateral sclerosis: can there be a link?". Revue neurologique 159 (1): 80–2. PMID 12618659. 
  20. ^ McCormick, A. L.; Brown, R. H.; Cudkowicz, M. E.; Al-Chalabi, A.; Garson, J. A. (2008). "Quantification of reverse transcriptase in ALS and elimination of a novel retroviral candidate". Neurology 70 (4): 278–83. PMID 18209202. doi:10.1212/01.wnl.0000297552.13219.b4. 
  21. ^ a b c d e f g Fallon, BA; Nields, JA (1994). "Lyme disease: a neuropsychiatric illness". The American Journal of Psychiatry 151 (11): 1571–83. PMID 7943444. 
  22. ^ Sokol, MS (2000). "Infection-triggered anorexia nervosa in children: clinical description of four cases". Journal of child and adolescent psychopharmacology 10 (2): 133–45. PMID 10933123. doi:10.1089/cap.2000.10.133. 
  23. ^ a b Johnson, E. H.; Windsor, J. J.; Clark, C. G. (2004). "Emerging from Obscurity: Biological, Clinical, and Diagnostic Aspects of Dientamoeba fragilis". Clinical Microbiology Reviews 17 (3): 553–70. PMC 452553. PMID 15258093. doi:10.1128/CMR.17.3.553-570.2004. 
  24. ^ a b Phillips, Anna C.; Carroll, Douglas; Khan, Naeem; Moss, Paul (2008). "Cytomegalovirus is associated with depression and anxiety in older adults". Brain, Behavior, and Immunity 22 (1): 52–5. PMID 17703915. doi:10.1016/j.bbi.2007.06.012. 
  25. ^ Addolorato, G.; Mirijello, A.; d’Angelo, C.; Leggio, L.; Ferrulli, A.; Abenavoli, L.; Vonghia, L.; Cardone, S. et al. (2008). "State and trait anxiety and depression in patients affected by gastrointestinal diseases: Psychometric evaluation of 1641 patients referred to an internal medicine outpatient setting". International Journal of Clinical Practice 62 (7): 1063–9. PMID 18422970. doi:10.1111/j.1742-1241.2008.01763.x. 
  26. ^ Gern, James E (2009). "Rhinovirus and the initiation of asthma". Current Opinion in Allergy and Clinical Immunology 9 (1): 73–8. PMC 2760477. PMID 19532096. doi:10.1097/ACI.0b013e32831f8f1b. 
  27. ^ Hahn, David L. (1999). "Chlamydia pneumoniae, asthma, and COPD: what is the evidence?". Annals of Allergy, Asthma & Immunology 83 (4): 271–88. doi:10.1016/S1081-1206(10)62666-X. 
  28. ^ Hahn, DL; Dodge, RW; Golubjatnikov, R (1991). "Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma". JAMA 266 (2): 225–30. PMID 2056624. doi:10.1001/jama.266.2.225. 
  29. ^ Institute of Medicine (US) Forum on Microbial Threats (1 July 2004). "Michael Dunne. INFECTIOUS AGENTS AND CARDIOVASCULAR DISEASE". In Knobler, Stacey L; O'Connor, Siobhán; Lemon, Stanley M et al. The Infectious Etiology of Chronic Diseases: Defining the Relationship, Enhancing the Research, and Mitigating the Effects: Workshop Summary. National Academies Press. pp. 36–44. ISBN 978-0-309-08994-4. 
  30. ^ Prager, M; Türel, Z; Speidl, WS; Zorn, G; Kaun, C; Niessner, A; Heinze, G; Huk, I et al. (2002). "Chlamydia pneumoniae in carotid artery atherosclerosis: a comparison of its presence in atherosclerotic plaque, healthy vessels, and circulating leukocytes from the same individuals". Stroke; a journal of cerebral circulation 33 (12): 2756–61. PMID 12468766. doi:10.1161/01.STR.0000039322.66575.77. 
  31. ^ Millichap, J. G. (2008). "Etiologic Classification of Attention-Deficit/Hyperactivity Disorder". Pediatrics 121 (2): e358–65. PMID 18245408. doi:10.1542/peds.2007-1332. 
  32. ^ Chess S (1971). "Autism in children with congenital rubella". J Autism Child Schizophr 1 (1): 33–47. PMID 5172438. doi:10.1007/bf01537741. 
  33. ^ Yamashita, Y; Fujimoto, C; Nakajima, E; Isagai, T; Matsuishi, T (2003). "Possible association between congenital cytomegalovirus infection and autistic disorder". Journal of autism and developmental disorders 33 (4): 455–9. PMID 12959425. doi:10.1023/A:1025023131029. 
  34. ^ Finegold, Sydney M.; Molitoris, Denise; Song, Yuli; Liu, Chengxu; Vaisanen, Marja‐Liisa; Bolte, Ellen; McTeague, Maureen; Sandler, Richard et al. (2002). "Gastrointestinal Microflora Studies in Late‐Onset Autism". Clinical Infectious Diseases 35 (Suppl 1): S6–S16. PMID 12173102. doi:10.1086/341914. 
  35. ^ Rose, NR (2008). "Group B Coxsackieviruses". Current topics in microbiology and immunology. Current Topics in Microbiology and Immunology 323: 293–314. ISBN 978-3-540-75545-6. PMID 18357776. doi:10.1007/978-3-540-75546-3_14.  |chapter= ignored (help)
  36. ^ Toussirot, E; Roudier, J; Soucek, K (2008). "Epstein–Barr virus in autoimmune diseases". Best Practice & Research Clinical Rheumatology 22 (5): 883–896. PMID 19028369. doi:10.1016/j.berh.2008.09.007. 
  37. ^ Barzilai, O; Sherer, Y; Ram, M; Izhaky, D; Anaya, JM; Shoenfeld, Y (2007). "Epstein-Barr virus and cytomegalovirus in autoimmune diseases: are they truly notorious? A preliminary report". Annals of the New York Academy of Sciences 1108: 567–77. PMID 17894021. doi:10.1196/annals.1422.059. 
  38. ^ Lehmann, HW; Von Landenberg, P; Modrow, S (2003). "Parvovirus B19 infection and autoimmune disease". Autoimmunity reviews 2 (4): 218–23. PMID 12848949. doi:10.1016/S1568-9972(03)00014-4. 
  39. ^ Stratton, Richard; Slapak, Gabrielle; Mahungu, Tabitha; Loes, Sabine Kinloch-de (2009). "Autoimmunity and HIV". Current Opinion in Infectious Diseases 22 (1): 49–56. PMID 19532080. doi:10.1097/QCO.0b013e3283210006. 
  40. ^ Shapira, Yinon; Agmon-Levin, Nancy; Shoenfeld, Yehuda (2009). "Mycobacterium Tuberculosis, Autoimmunity, and Vitamin D". Clinical Reviews in Allergy & Immunology 38 (2–3): 169–77. doi:10.1007/s12016-009-8150-1. 
  41. ^ Thomas, Dimitrios; Karachaliou, Feneli; Kallergi, Konstantina; Vlachopapadopoulou, Elpis; Antonaki, Georgia; Chatzimarkou, Fotini; Fotinou, Aspasia; Kaldrymides, Philippos; Michalacos, Stefanos (2008). "Herpes virus antibodies seroprevalence in children with autoimmune thyroid disease". Endocrine 33 (2): 171–5. PMID 18473192. doi:10.1007/s12020-008-9068-8. 
  42. ^ Larizza, D.; Calcaterra, Valeria; Martinetti, Miryam; Negrini, Riccardo; De Silvestri, Annalisa; Cisternino, Mariangela; Iannone, A. M.; Solcia, Enrico (2006). "Helicobacter pylori Infection and Autoimmune Thyroid Disease in Young Patients: The Disadvantage of Carrying the Human Leukocyte Antigen-DRB1*0301 Allele". Journal of Clinical Endocrinology & Metabolism 91: 176–9. doi:10.1210/jc.2005-1272. 
  43. ^ a b c Bode, L; Ludwig, H (2003). "Borna disease virus infection, a human mental-health risk". Clinical Microbiology Reviews 16 (3): 534–45. PMC 164222. PMID 12857781. doi:10.1128/CMR.16.3.534-545.2003. 
  44. ^ Dickerson, Faith B; Boronow, John J; Stallings, Cassie; Origoni, Andrea E; Cole, Sara; Krivogorsky, Bogdana; Yolken, Robert H (2004). "Infection with herpes simplex virus type 1 is associated with cognitive deficits in bipolar disorder". Biological Psychiatry 55 (6): 588–593. PMID 15013827. doi:10.1016/j.biopsych.2003.10.008. 
  45. ^ Pisani, P; Parkin, DM; Muñoz, N; Ferlay, J (1997). "Cancer and infection: estimates of the attributable fraction in 1990". Cancer epidemiology, biomarkers & prevention 6 (6): 387–400. PMID 9184771. 
  46. ^ De Martel, C.; Franceschi, S. (2009). "Infections and cancer: Established associations and new hypotheses". Critical Reviews in Oncology/Hematology 70 (3): 183–194. PMID 18805702. doi:10.1016/j.critrevonc.2008.07.021.  edit
  47. ^ Barzon, L; Trevisan, M; Masi, G; Pacenti, M; Sinigaglia, A; MacChi, V; Porzionato, A; De Caro, R et al. (2007). "Detection of polyomaviruses and herpesviruses in human adrenal tumors". Oncogene 27 (6): 857–64. PMID 17684484. doi:10.1038/sj.onc.1210699. 
  48. ^ Abramowitz, Laurent; Jacquard, Anne-Carole; Jaroud, Fatiha; Haesebaert, Julie; Siproudhis, Laurent; Pradat, Pierre; Aynaud, Olivier; Leocmach, Yann et al. (2011). "Human papillomavirus genotype distribution in anal cancer in France: The EDiTH V study". International Journal of Cancer 129 (2): 433–439. doi:10.1002/ijc.25671. 
  49. ^ Botelho, Monica Catarina; MacHado, Jose Carlos; Correia Da Costa, Jose Manuel (2010). "Schistosoma haematobiumand bladder cancer: What lies beneath?". Virulence 1 (2): 84–7. PMID 21178421. doi:10.4161/viru.1.2.10487. 
  50. ^ Dziurzynski, K.; Wei, J.; Qiao, W.; Hatiboglu, M. A.; Kong, L.-Y.; Wu, A.; Wang, Y.; Cahill, D. et al. (2011). "Glioma-associated cytomegalovirus mediates subversion of the monocyte lineage to a tumor propagating phenotype". Clinical Cancer Research 17 (14): 4642–9. PMC 3139801. PMID 21490182. doi:10.1158/1078-0432.CCR-11-0414. 
  51. ^ Barbanti-Brodano, Giuseppe; Sabbioni, Silvia; Martini, Fernanda; Negrini, Massimo; Corallini, Alfredo; Tognon, Mauro (2006). "Polyomaviruses and Human Diseases". Advances in Experimental Medicine and Biology 577. pp. 319–41. ISBN 978-0-387-29233-5. doi:10.1007/0-387-32957-9_23.  |chapter= ignored (help)
  52. ^ Lawson, James S; Günzburg, Walter H; Whitaker, Noel J (2006). "Viruses and human breast cancer". Future Microbiology 1 (1): 33–51. PMID 17661684. doi:10.2217/17460913.1.1.33. 
  53. ^ Chia, J.; Chia, A.; El-Habbal, R. (2011). "Carcinoid tumour associated with enterovirus infection". Journal of Clinical Pathology 64 (8): 722–4. PMID 21278394. doi:10.1136/jcp.2010.082271. 
  54. ^ Bosch, FX; Lorincz, A; Muñoz, N; Meijer, CJ; Shah, KV (2002). "The causal relation between human papillomavirus and cervical cancer". Journal of clinical pathology 55 (4): 244–65. PMC 1769629. PMID 11919208. doi:10.1136/jcp.55.4.244. 
  55. ^ Castellarin, Mauro; Warren, René L.; Freeman, J. Douglas; Dreolini, Lisa; Krzywinski, Martin; Strauss, Jaclyn; Barnes, Rebecca; Watson, Peter et al. (February 2012). "Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma". Genome Research 22 (2): 299–306. PMC 3266037. PMID 22009989. doi:10.1101/gr.126516.111. 
  56. ^ Burnett-Hartman, Andrea N.; Newcomb, Polly A.; Potter, John D. (2008). "Infectious agents and colorectal cancer: A review of Helicobacter pylori, Streptococcus bovis, JC virus, and human papillomavirus". Cancer Epidemiology Biomarkers & Prevention 17 (11): 2970–9. PMC 2676114. PMID 18990738. doi:10.1158/1055-9965.EPI-08-0571. 
  57. ^ H Salim, Omer E; Hamid, Hytham K S; Mekki, Salwa O; Suleiman, Suleiman H; Ibrahim, Shakir Z (2010). "Colorectal carcinoma associated with schistosomiasis: a possible causal relationship". World Journal of Surgical Oncology 8: 68. PMC 2928231. PMID 20704754. doi:10.1186/1477-7819-8-68. 
  58. ^ Coelho, Tatiana R; Almeida, Luis; Lazo, Pedro A (2010). "JC virus in the pathogenesis of colorectal cancer, an etiological agent or another component in a multistep process?". Virology Journal 7: 42. PMC 2830963. PMID 20167111. doi:10.1186/1743-422X-7-42. 
  59. ^ Samaras, V; Rafailidis, PI; Mourtzoukou, EG; Peppas, G; Falagas, ME (2010). "Chronic bacterial and parasitic infections and cancer: a review". Journal of infection in developing countries 4 (5): 267–81. PMID 20539059. doi:10.3855/jidc.819. 
  60. ^ Hjalgrim, H.; Engels, E. A. (2008). "Infectious aetiology of Hodgkin and non-Hodgkin lymphomas: a review of the epidemiological evidence". Journal of Internal Medicine 264 (6): 537–48. PMID 19017178. doi:10.1111/j.1365-2796.2008.02031.x. 
  61. ^ Mazzaro, C; Tirelli, U; Pozzato, G (2005). "Hepatitis C virus and non-Hodgkin's lymphoma 10 years later". Digestive and Liver Disease 37 (4): 219–26. PMID 15788203. doi:10.1016/j.dld.2005.01.003. 
  62. ^ Carbone, Antonino; Gloghini, Annunziata; Serraino, Diego; Spina, Michele (2009). "HIV-associated Hodgkin lymphoma". Current Opinion in HIV and AIDS 4 (1): 3–10. PMID 19339934. doi:10.1097/COH.0b013e32831a722b. 
  63. ^ Michielsen, Peter P; Francque, Sven M; Van Dongen, Jurgen L (2005). "Viral hepatitis and hepatocellular carcinoma". World Journal of Surgical Oncology 3: 27. PMC 1166580. PMID 15907199. doi:10.1186/1477-7819-3-27. 
  64. ^ Ishii, A; Matsuoka, H; Aji, T; Ohta, N; Arimoto, S; Wataya, Y; Hayatsu, H (1994). "Parasite infection and cancer: with special emphasis on Schistosoma japonicum infections (Trematoda). A review". Mutation research 305 (2): 273–81. PMID 7510038. doi:10.1016/0027-5107(94)90247-X. 
  65. ^ Chaturvedi, A. K.; Gaydos, C. A.; Agreda, P.; Holden, J. P.; Chatterjee, N.; Goedert, J. J.; Caporaso, N. E.; Engels, E. A. (2010). "Chlamydia pneumoniae Infection and Risk for Lung Cancer". Cancer Epidemiology Biomarkers & Prevention 19 (6): 1498–505. doi:10.1158/1055-9965.EPI-09-1261. 
  66. ^ Joh, Joongho; Jenson, A. Bennett; Moore, Grace D.; Rezazedeh, Arash; Slone, Stephen P.; Ghim, Shin-je; Kloecker, Goetz H. (2010). "Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV) in non small cell lung cancer". Experimental and Molecular Pathology 89 (3): 222–6. PMID 20699096. doi:10.1016/j.yexmp.2010.08.001. 
  67. ^ Rivera, Zeyana; Strianese, Oriana; Bertino, Pietro; Yang, Haining; Pass, Harvey; Carbone, Michele (2008). "The relationship between simian virus 40 and mesothelioma". Current Opinion in Pulmonary Medicine 14 (4): 316–21. PMID 18520265. doi:10.1097/MCP.0b013e3283018220. 
  68. ^ Butel, JS; Vilchez, RA; Jorgensen, JL; Kozinetz, CA (2003). "Association between SV40 and non-Hodgkin's lymphoma". Leukemia & lymphoma. 44 Suppl 3: S33–9. PMID 15202523. doi:10.1080/10428190310001623784. 
  69. ^ Chia, J K S; Chia, A Y (2007). "Chronic fatigue syndrome is associated with chronic enterovirus infection of the stomach". Journal of Clinical Pathology 61 (1): 1–2. PMID 17873115. doi:10.1136/jcp.2007.050054. 
  70. ^ Chia, J.; Chia, A.; Voeller, M.; Lee, T.; Chang, R. (2009). "Acute enterovirus infection followed by myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and viral persistence". Journal of Clinical Pathology 63 (2): 165–8. PMID 19828908. doi:10.1136/jcp.2009.070466. 
  71. ^ Di Luca, D; Zorzenon, M; Mirandola, P; Colle, R; Botta, GA; Cassai, E (1995). "Human herpesvirus 6 and human herpesvirus 7 in chronic fatigue syndrome". Journal of clinical microbiology 33 (6): 1660–61. PMC 228240. PMID 7650209. 
  72. ^ Chapenko, S; Krumina, A; Kozireva, S; Nora, Z; Sultanova, A; Viksna, L; Murovska, M (2006). "Activation of human herpesviruses 6 and 7 in patients with chronic fatigue syndrome". Journal of Clinical Virology 37: S47–51. PMID 17276369. doi:10.1016/S1386-6532(06)70011-7. 
  73. ^ Seishima, Mariko; Mizutani, Yoko; Shibuya, Yoshinao; Arakawa, Chikako (2008). "Chronic Fatigue Syndrome after Human Parvovirus B19 Infection without Persistent Viremia". Dermatology 216 (4): 341–6. PMID 18277075. doi:10.1159/000116723. 
  74. ^ Kerr, JR; Bracewell, J; Laing, I; Mattey, DL; Bernstein, RM; Bruce, IN; Tyrrell, DA (2002). "Chronic fatigue syndrome and arthralgia following parvovirus B19 infection". The Journal of rheumatology 29 (3): 595–602. PMID 11911112. 
  75. ^ Wildman, MJ; Smith, EG; Groves, J; Beattie, JM; Caul, EO; Ayres, JG (2002). "Chronic fatigue following infection by Coxiella burnetii (Q fever): ten-year follow-up of the 1989 UK outbreak cohort". QJM 95 (8): 527–38. PMID 12145392. doi:10.1093/qjmed/95.8.527. 
  76. ^ Chia, John K. S.; Chia, Laura Y. (1999). "Chronic Chlamydia pneumoniae Infection: A Treatable Cause of Chronic Fatigue Syndrome". Clinical Infectious Diseases 29 (2): 452–3. PMID 10476765. doi:10.1086/520239. 
  77. ^ Von Hertzen, L; Alakärppä, H; Koskinen, R; Liippo, K; Surcel, HM; Leinonen, M; Saikku, P (1997). "Chlamydia pneumoniae infection in patients with chronic obstructive pulmonary disease". Epidemiology and infection 118 (2): 155–64. PMC 2808789. PMID 9129592. doi:10.1017/S095026889600725X. 
  78. ^ McManus, T. E.; Marley, A-M.; Baxter, N.; Christie, S. N.; Elborn, J. S.; O'Neill, H. J.; Coyle, P. V.; Kidney, J. C. (2008). "High levels of Epstein-Barr virus in COPD". European Respiratory Journal 31 (6): 1221–6. PMID 18287127. doi:10.1183/09031936.00107507. 
  79. ^ Nyström, Niklas; Berg, Tove; Lundin, Elin; Skog, Oskar; Hansson, Inga; Frisk, Gun; Juko-Pecirep, Ivana; Nilsson, Mats; Gyllensten, Ulf; Finkel, Yigael; Fuxe, Jonas; Wanders, Alkwin (2013). "Human Enterovirus Species B in Ileocecal Crohn’s Disease". Clinical and Translational Gastroenterology 4 (6): e38. ISSN 2155-384X. doi:10.1038/ctg.2013.7. 
  80. ^ Mendoza, JL; San-Pedro, A; Culebras, E; Cíes, R; Taxonera, C; Lana, R; Urcelay, E; De La Torre, F et al. (2010). "High prevalence of viable Mycobacterium avium subspecies paratuberculosis in Crohn's disease". World journal of gastroenterology 16 (36): 4558–63. PMC 2945487. PMID 20857526. doi:10.3748/wjg.v16.i36.4558. 
  81. ^ Luiggi, Cristina; Solon, Juan Carlos (December 2010). "Equations that Spell Disaster: Researchers are pinpointing the factors that combine to produce complex diseases". The Scientist 24 (12): 40. Retrieved November 8, 2012. 
  82. ^ Roivainen, Merja; Viik-Kajander, Maarit; Palosuo, Timo; Toivanen, Petri; Leinonen, Maija; Saikku, Pekka; Tenkanen, Leena; Manninen, Vesa et al. (2000). "Infections, inflammation, and the risk of coronary heart disease". Circulation 101 (3): 252–7. PMID 10645920. doi:10.1161/01.CIR.101.3.252. 
  83. ^ Murray, KO; Resnick, M; Miller, V (2007). "Depression after infection with West Nile virus". Emerging Infectious Diseases 13 (3): 479–81. PMC 2725905. PMID 17552106. doi:10.3201/eid1303.060602. 
  84. ^ Kar, Nilamadhab; Misra, Baikunthanath (2004). "Toxoplasma seropositivity and depression: a case report". BMC Psychiatry 4: 1. PMC 356918. PMID 15018628. doi:10.1186/1471-244X-4-1. 
  85. ^ Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW; O'Connor; Freund; Johnson; Kelley (January 2008). "From inflammation to sickness and depression: when the immune system subjugates the brain". Nature Reviews Neuroscience 9 (1): 46–56. PMC 2919277. PMID 18073775. doi:10.1038/nrn2297. 
  86. ^ Dantzer R (May 2009). "Cytokine, sickness behavior, and depression". Immunol Allergy Clin North Am 29 (2): 247–64. PMC 2740752. PMID 19389580. doi:10.1016/j.iac.2009.02.002. 
  87. ^ a b c Schaller, JL; Burkland, GA; Langhoff, PJ (2007). "Do bartonella infections cause agitation, panic disorder, and treatment-resistant depression?". MedGenMed 9 (3): 54. PMC 2100128. PMID 18092060. 
  88. ^ Natelson, BH; Ye, N; Moul, DE; Jenkins, FJ; Oren, DA; Tapp, WN; Cheng, YC (1994). "High titers of anti-Epstein-Barr virus DNA polymerase are found in patients with severe fatiguing illness". Journal of medical virology 42 (1): 42–6. PMID 8308519. doi:10.1002/jmv.1890420109. 
  89. ^ Yeung, W.-C. G.; Rawlinson, W. D.; Craig, M. E. (2011). "Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies". BMJ 342: d35–d35. PMC 3033438. PMID 21292721. doi:10.1136/bmj.d35. 
  90. ^ a b Richardson, S. J.; Willcox, A.; Bone, A. J.; Foulis, A. K.; Morgan, N. G. (2009). "The prevalence of enteroviral capsid protein vp1 immunostaining in pancreatic islets in human type 1 diabetes". Diabetologia 52 (6): 1143–51. PMID 19266182. doi:10.1007/s00125-009-1276-0. 
  91. ^ Díaz-Horta, O; Bello, M; Cabrera-Rode, E; Suárez, J; Más, P; García, I; Abalos, I; Jofra, R et al. (2001). "Echovirus 4 and type 1 diabetes mellitus". Autoimmunity 34 (4): 275–81. PMID 11905853. doi:10.3109/08916930109014696. 
  92. ^ Institute of Medicine (US) Forum on Microbial Threats (1 July 2004). "Mark A. Pallansch, M. Steven Oberste. COMMON INFECTIONS AND UNCOMMON DISEASE: ELUSIVE ASSOCIATIONS OF ENTEROVIRUSES AND TYPE I DIABETES MELLITUS". In Knobler, Stacey L; O'Connor, Siobhán; Lemon, Stanley M et al. The Infectious Etiology of Chronic Diseases: Defining the Relationship, Enhancing the Research, and Mitigating the Effects: Workshop Summary. National Academies Press. pp. 52–53. ISBN 978-0-309-08994-4. 
  93. ^ Kawashima, H; Ihara, T; Ioi, H; Oana, S; Sato, S; Kato, N; Takami, T; Kashiwagi, Y et al. (2004). "Enterovirus-related type 1 diabetes mellitus and antibodies to glutamic acid decarboxylase in Japan". Journal of Infection 49 (2): 147–51. PMID 15236922. doi:10.1016/j.jinf.2004.01.012. 
  94. ^ Laitinen OH, Honkanen H, Pakkanen O et al. (February 2014). "Coxsackievirus B1 is associated with induction of β-cell autoimmunity that portends type 1 diabetes". Diabetes 63 (2): 446–55. PMID 23974921. doi:10.2337/db13-0619. 
  95. ^ Kolehmainen P, Koskiniemi M, Oikarinen S et al. (September 2013). "Human parechovirus and the risk of type 1 diabetes". J. Med. Virol. 85 (9): 1619–23. PMID 23852688. doi:10.1002/jmv.23659. 
  96. ^ Roberts, BW; Cech, I (2005). "Association of type 2 diabetes mellitus and seroprevalence for cytomegalovirus". Southern Medical Journal 98 (7): 686–92. PMID 16108236. doi:10.1097/01.SMJ.0000163310.12516.2D. 
  97. ^ Negro, F; Alaei, M (2009). "Hepatitis C virus and type 2 diabetes". World journal of gastroenterology 15 (13): 1537–47. PMC 2669937. PMID 19340895. doi:10.3748/wjg.15.1537. 
  98. ^ Holmberg, Rebecka; Klitz, William; Blixt, Martin; Berggren, Per-Olof; Juntti-Berggren, Lisa; Niklasson, Bo (2009). "Antiviral treatments reduce severity of diabetes in Ljungan virus-infected CD-1 mice and delay onset in diabetes-prone BB rats". Microbiology and Immunology 53 (10): 567–72. PMID 19780970. doi:10.1111/j.1348-0421.2009.00160.x. 
  99. ^ San Martín, Miguel A; García, Ángel; Rodríguez, Francisco J; Terol, Ignacio (2002). "Autoinmunidad y miocardiopatía dilatada: situación actual y perspectivas" [Dilated Cardiomyopathy and Autoimmunity: an Overview of Current Knowledge and Perspectives]. Revista Española de Cardiología (in Spanish) 55 (5): 514–24. PMID 12015932. doi:10.1016/s0300-8932(02)76644-x. 
  100. ^ Fotheringham, Julie; Donati, Donatella; Akhyani, Nahid; Fogdell-Hahn, Anna; Vortmeyer, Alexander; Heiss, John D.; Williams, Elizabeth; Weinstein, Steven et al. (2007). "Association of Human Herpesvirus-6B with Mesial Temporal Lobe Epilepsy". PLoS Medicine 4 (5): e180. PMC 1880851. PMID 17535102. doi:10.1371/journal.pmed.0040180. 
  101. ^ Visser, LH; Van Der Meché, FG; Meulstee, J; Rothbarth, PP; Jacobs, BC; Schmitz, PI; Van Doorn, PA (1996). "Cytomegalovirus infection and Guillain-Barré syndrome: the clinical, electrophysiologic, and prognostic features. Dutch Guillain-Barré Study Group". Neurology 47 (3): 668–73. PMID 8797462. doi:10.1212/WNL.47.3.668. 
  102. ^ Clement, Oliva; Vázquez, Mauricio; Pérez, Elda; Magaña, Anastasia; Santillán, Marco; Briseño, Baltazar (2000). "Determinación de enterovirus en casos con diagnóstico de síndrome de Guillain-Barré mediante la utilización de la técnica de concentración ácida" [Enterovirus determination in cases with a diagnosis of the Guillain-Barré syndrome by using the acid-concentration technic]. Gaceta médica de México (in Spanish) 136 (2): 93–7. PMID 10815319. 
  103. ^ Sobieszczańska BM, Osek J, Waśko-Czopnik D, Dworniczek E, Jermakow K; Osek; Waśko-Czopnik; Dworniczek; Jermakow (April 2007). "Association of enteroaggregative Escherichia coli with irritable bowel syndrome". Clin. Microbiol. Infect. 13 (4): 404–7. PMID 17359324. doi:10.1111/j.1469-0691.2006.01669.x. 
  104. ^ Scanu, Antonio M.; Bull, Tim J.; Cannas, Sara; Sanderson, Jeremy D.; Sechi, Leonardo A.; Dettori, Giuseppe; Zanetti, Stefania; Hermon-Taylor, John (2007). "Mycobacterium avium Subspecies paratuberculosis Infection in Cases of Irritable Bowel Syndrome and Comparison with Crohn's Disease and Johne's Disease: Common Neural and Immune Pathogenicities". Journal of Clinical Microbiology 45 (12): 3883–90. PMC 2168579. PMID 17913930. doi:10.1128/JCM.01371-07. 
  105. ^ Morken, Mette Helvik; Valeur, JøRgen; Norin, Elisabeth; Midtvedt, Tore; Nysæter, Gunnar; Berstad, Arnold (2009). "Antibiotic or bacterial therapy in post-giardiasis irritable bowel syndrome". Scandinavian Journal of Gastroenterology 44 (11): 1296–303. PMID 19821794. doi:10.3109/00365520903274401. 
  106. ^ Stensvold, C. R.; Lewis, H. C.; Hammerum, A. M.; Porsbo, L. J.; Nielsen, S. S.; Olsen, K. E. P.; Arendrup, M. C.; Nielsen, H. V.; Mølbak, K. (2009). "Blastocystis: unravelling potential risk factors and clinical significance of a common but neglected parasite". Epidemiology and Infection 137 (11): 1655–63. PMID 19393117. doi:10.1017/S0950268809002672. 
  107. ^ Albert HB, Sorensen JS, Christensen BS, Manniche C; Sorensen; Christensen; Manniche (April 2013). "Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy". Eur Spine J 22 (4): 697–707. PMC 3631045. PMID 23404353. doi:10.1007/s00586-013-2675-y. 
  108. ^ Albert HB, Lambert P, Rollason J et al. (April 2013). "Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae?". Eur Spine J 22 (4): 690–6. PMC 3631023. PMID 23397187. doi:10.1007/s00586-013-2674-z. 
  109. ^ a b c Aslanidis, S; Pyrpasopoulou, A; Kontotasios, K; Doumas, S; Zamboulis, C (2008). "Parvovirus B19 infection and systemic lupus erythematosus: Activation of an aberrant pathway?". European Journal of Internal Medicine 19 (5): 314–8. PMID 18549931. doi:10.1016/j.ejim.2007.09.013. 
  110. ^ James, Judith A; Harley, John B; Scofield, R Hal (2006). "Epstein–Barr virus and systemic lupus erythematosus". Current Opinion in Rheumatology 18 (5): 462–7. PMID 16896283. doi:10.1097/01.bor.0000240355.37927.94. 
  111. ^ Rider, JR; Ollier, WE; Lock, RJ; Brookes, ST; Pamphilon, DH (1997). "Human cytomegalovirus infection and systemic lupus erythematosus". Clinical and experimental rheumatology 15 (4): 405–9. PMID 9272302. 
  112. ^ Lin, Ching-Yih; Su, Shih-Bin; Chang, Chih-Ching; Lee, Tsung-Ming; Shieh, Jiunn-Min; Guo, How-Ran (2009). "The Association Between Chlamydia pneumoniae and Metabolic Syndrome in Taiwanese Adults". Southern Medical Journal 102 (12): 1203–8. PMID 20016424. doi:10.1097/SMJ.0b013e3181c043d9. 
  113. ^ Nabipour, Iraj; Vahdat, Katayon; Jafari, Seyed; Pazoki, Raha; Sanjdideh, Zahra (2006). "The association of metabolic syndrome and Chlamydia pneumoniae, Helicobacter pylori, cytomegalovirus, and herpes simplex virus type 1: the Persian Gulf Healthy Heart Study". Cardiovascular Diabetology 5: 25. PMC 1697801. PMID 17140429. doi:10.1186/1475-2840-5-25. 
  114. ^ Haahr, Sven; Höllsberg, Per (2006). "Multiple sclerosis is linked to Epstein-Barr virus infection". Reviews in Medical Virology 16 (5): 297–310. PMID 16927411. doi:10.1002/rmv.503. 
  115. ^ Mechelli R, Manzari C, Policano C, Annese A, Picardi E, Umeton R et al. (2015). "Epstein-Barr virus genetic variants are associated with multiple sclerosis". Neurology 84 (13): 1362–8. PMID 25740864. doi:10.1212/WNL.0000000000001420. 
  116. ^ Voumvourakis, Konstantine I.; Kitsos, Dimitrios K.; Tsiodras, Sotirios; Petrikkos, George; Stamboulis, Eleftherios (2010). "Human Herpesvirus 6 Infection as a Trigger of Multiple Sclerosis". Mayo Clinic Proceedings 85 (11): 1023–30. PMC 2966366. PMID 20926836. doi:10.4065/mcp.2010.0350. 
  117. ^ Sotelo, Julio; Martínez-Palomo, Adolfo; Ordoñez, Graciela; Pineda, Benjamin (2008). "Varicella-zoster virus in cerebrospinal fluid at relapses of multiple sclerosis". Annals of Neurology 63 (3): 303–11. PMID 18306233. doi:10.1002/ana.21316. 
  118. ^ Munger, Kassandra L.; Peeling, Rosanna W.; Hernán, Miguel A.; Chasan-Taber, Lisa; Olek, Michael J.; Hankinson, Susan E.; Hunter, David; Ascherio, Alberto (2003). "Infection with Chlamydia pneumoniae and Risk of Multiple Sclerosis". Epidemiology 14 (2): 141–7. PMID 12606878. doi:10.1097/01.EDE.0000050699.23957.8E. 
  119. ^ Arcari, Christine M.; Gaydos, Charlotte A.; Nieto, F. Javier; Krauss, Margot; Nelson, Kenrad E. (2005). "Association between Chlamydia pneumoniae and Acute Myocardial Infarction in Young Men in the United States Military: The Importance of Timing of Exposure Measurement". Clinical Infectious Diseases 40 (8): 1123–30. PMID 15791511. doi:10.1086/428730. 
  120. ^ Gabrylewicz, Bogna; Mazurek, Urszula; Ochała, Andrzej; Sliupkas-Dyrda, Elektra; Garbocz, Piotr; Pyrlik, Andrzej; Mróz, Iwona; Wilczok, Tadeusz; Tendera, Michał (2003). "Zakażenie wirusem cytomegalii w świeżym zawale serca. Powiązania przyczynowo-skutkowe?" [Cytomegalovirus infection in acute myocardial infarction. Is there a causative relationship?]. Kardiologia Polska (in Polish) 59 (10): 283–92. PMID 14618212. 
  121. ^ Andréoletti, Laurent; Ventéo, Lydie; Douche-Aourik, Fatima; Canas, Frédéric; De La Grandmaison, Geoffroy Lorin; Jacques, Jérôme; Moret, Hélène; Jovenin, Nicolas et al. (2007). "Active Coxsackieviral B Infection Is Associated With Disruption of Dystrophin in Endomyocardial Tissue of Patients Who Died Suddenly of Acute Myocardial Infarction". Journal of the American College of Cardiology 50 (23): 2207–14. PMID 18061067. doi:10.1016/j.jacc.2007.07.080. 
  122. ^ Gaaloul, Imed; Riabi, Samira; Harrath, Rafik; Evans, Mark; Salem, Nidhal H; Mlayeh, Souheil; Huber, Sally; Aouni1, Mahjoub (2012). "Sudden unexpected death related to enterovirus myocarditis: histopathology, immunohistochemstry and molecular pathology diagnosis at post-mortem". BMC Infectious Diseases 12: 212. PMC 3462138. PMID 22966951. doi:10.1186/1471-2334-12-212. 
  123. ^ Atkinson, R L; Dhurandhar, N V; Allison, D B; Bowen, R L; Israel, B A; Albu, J B; Augustus, A S (2004). "Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids". International Journal of Obesity 29 (3): 281–6. PMID 15611785. doi:10.1038/sj.ijo.0802830. 
  124. ^ Atkinson, Richard L.; Lee, Insil; Shin, Hye-Jung; He, Jia (2010). "Human adenovirus-36 antibody status is associated with obesity in children". International Journal of Pediatric Obesity 5 (2): 157–60. PMID 19593728. doi:10.3109/17477160903111789. 
  125. ^ McAllister, Emily; Dhurandhar, Nikhil; Keith, Scott; Aronne, Louis; Barger, Jamie; Baskin, Monica; Benca, Ruth; Biggio, Joseph et al. (2009). "Ten Putative Contributors to the Obesity Epidemic". Critical Reviews in Food Science and Nutrition 49 (10): 868–913. PMC 2932668. PMID 19960394. doi:10.1080/10408390903372599. 
  126. ^ Fusinski, Keith A (2008). Adenovirus 36 E4orf1 gene induces differentiation of 3T3-L1 cells (PhD Dissertation). Wayne State University. ISBN 978-0-549-66718-6. 
  127. ^ Vasilakopoulou, A; Le Roux, C W (2007). "Could a virus contribute to weight gain?". International Journal of Obesity 31 (9): 1350–6. PMID 17420782. doi:10.1038/sj.ijo.0803623. 
  128. ^ Atkinson, RL (2007). "Viruses as an etiology of obesity". Mayo Clinic proceedings. Mayo Clinic 82 (10): 1192–8. PMID 17908526. doi:10.4065/82.10.1192. 
  129. ^ Ley, Ruth E.; Turnbaugh, Peter J.; Klein, Samuel; Gordon, Jeffrey I. (2006). "Microbial ecology: Human gut microbes associated with obesity". Nature 444 (7122): 1022–3. Bibcode:2006Natur.444.1022L. PMID 17183309. doi:10.1038/4441022a. 
  130. ^ a b Mell, L. K.; Davis, RL; Owens, D (2005). "Association Between Streptococcal Infection and Obsessive-Compulsive Disorder, Tourette's Syndrome, and Tic Disorder". Pediatrics 116 (1): 56–60. PMID 15995031. doi:10.1542/peds.2004-2058. 
  131. ^ Takahashi, M; Yamada, T (1999). "Viral etiology for Parkinson's disease--a possible role of influenza A virus infection". Japanese journal of infectious diseases 52 (3): 89–98. PMID 10507986. 
  132. ^ Miman, Ozlem; Kusbeci, Ozge Yilmaz; Aktepe, Orhan Cem; Cetinkaya, Zafer (2010). "The probable relation between Toxoplasma gondii and Parkinson's disease". Neuroscience Letters 475 (3): 129–31. PMID 20350582. doi:10.1016/j.neulet.2010.03.057. 
  133. ^ Qayoom, S; Ahmad, QM (2003). "Psoriasis and Helicobacter pylori". Indian journal of dermatology, venereology and leprology 69 (2): 133–4. PMID 17642857. 
  134. ^ Hsieh, Y.-F.; Liu, H.-W.; Hsu, T.-C.; Wei, J. C.-C.; Shih, C.-M.; Krause, P. J.; Tsay, G. J. (2007). "Serum Reactivity against Borrelia burgdorferi OspA in Patients with Rheumatoid Arthritis". Clinical and Vaccine Immunology 14 (11): 1437–41. PMC 2168181. PMID 17881508. doi:10.1128/CVI.00151-07. 
  135. ^ Drake, Wonder Puryear; Newman, Lee S (2006). "Mycobacterial antigens may be important in sarcoidosis pathogenesis". Current Opinion in Pulmonary Medicine 12 (5): 359–63. PMID 16926652. doi:10.1097/01.mcp.0000239554.01068.94. 
  136. ^ Herndon, BL; Vlach, V; Dew, M; Willsie, SK (2004). "Helicobacter pylori-related immunoglobulins in sarcoidosis". Journal of investigative medicine 52 (2): 137–43. PMID 15068230. doi:10.2310/6650.2004.17876. 
  137. ^ Lian, W; Luo, W (1995). "Borrelia burgdorferi DNA in biological samples from patients with sarcoidosis using the polymerase chain reaction technique". Chinese medical sciences journal = Chung-kuo i hsueh k'o hsueh tsa chih / Chinese Academy of Medical Sciences 10 (2): 93–5. PMID 7647327. 
  138. ^ Krause, Daniela; Matz, Judith; Weidinger, Elif; Wagner, Jenny; Wildenauer, Agnes; Obermeier, Michael; Riedel, Michael; Müller, Norbert (2010). "The association of infectious agents and schizophrenia". World Journal of Biological Psychiatry 11 (5): 739–43. PMID 20602604. doi:10.3109/15622971003653246. 
  139. ^ Rantakallio, P; Jones, P; Moring, J; Von Wendt, L (1997). "Association between central nervous system infections during childhood and adult onset schizophrenia and other psychoses: a 28-year follow-up". International Journal of Epidemiology 26 (4): 837–43. PMID 9279617. doi:10.1093/ije/26.4.837. 
  140. ^ Brown, Alan S.; Begg, Melissa D.; Gravenstein, Stefan; Schaefer, Catherine A.; Wyatt, Richard J.; Bresnahan, Michaeline; Babulas, Vicki P.; Susser, Ezra S. (2004). "Serologic Evidence of Prenatal Influenza in the Etiology of Schizophrenia". Archives of General Psychiatry 61 (8): 774–80. PMID 15289276. doi:10.1001/archpsyc.61.8.774. 
  141. ^ Cook, PJ; Honeybourne, D; Lip, GY; Beevers, DG; Wise, R; Davies, P (1998). "Chlamydia pneumoniae antibody titers are significantly associated with acute stroke and transient cerebral ischemia: the West Birmingham Stroke Project". Stroke; a journal of cerebral circulation 29 (2): 404–10. PMID 9472881. doi:10.1161/01.STR.29.2.404. 
  142. ^ Ponzetto, A; Marchet, A; Pellicano, R; Lovera, N; Chianale, G; Nobili, M; Rizzetto, M; Cerrato, P (2002). "Association of Helicobacter pylori infection with ischemic stroke of non-cardiac origin: the BAT.MA.N. project study". Hepato-gastroenterology 49 (45): 631–4. PMID 12063957. 
  143. ^ Sheu, J.-J.; Chiou, H.-Y.; Kang, J.-H.; Chen, Y.-H.; Lin, H.-C. (2009). "Tuberculosis and the Risk of Ischemic Stroke: A 3-Year Follow-Up Study". Stroke 41 (2): 244–9. PMID 20035070. doi:10.1161/STROKEAHA.109.567735. 
  144. ^ Leonardi, S; Pavone, P; Rotolo, N; La Rosa, M (2005). "Stroke in two children with Mycoplasma pneumoniae infection. A causal or casual relationship?". The Pediatric Infectious Disease Journal 24 (9): 843–5. PMID 16148858. doi:10.1097/01.inf.0000177284.88356.56. 
  145. ^ Kang, J.-H.; Ho, J.-D.; Chen, Y.-H.; Lin, H.-C. (2009). "Increased Risk of Stroke After a Herpes Zoster Attack: A Population-Based Follow-Up Study". Stroke 40 (11): 3443–8. PMID 19815828. doi:10.1161/STROKEAHA.109.562017. 
  146. ^ Cleary, J; Pearson, M; Oliver, J; Chapman, S (2008). "Association Between Histoplasma Exposure and Stroke". Journal of Stroke and Cerebrovascular Diseases 17 (5): 312–9. PMID 18755412. doi:10.1016/j.jstrokecerebrovasdis.2008.01.015. 
  147. ^ Fazeli, Bahare; Ravari, Hassan; Farzadnia, Mahdi (2011). "Does a species of Rickettsia play a role in the pathophysiology of Buerger's disease?". Vascular 20 (6): 334. PMID 21803838. doi:10.1258/vasc.2011.cr0271. 
  148. ^ Muller, N; Riedel, M; Blendinger, C; Oberle, K; Jacobs, E; Abelehorn, M (2004). "infection and Tourette's syndrome". Psychiatry Research 129 (2): 119–25. PMID 15590039. doi:10.1016/j.psychres.2004.04.009. 
  149. ^ Krause, Daniela; Matz, Judith; Weidinger, Elif; Wagner, Jenny; Wildenauer, Agnes; Obermeier, Michael; Riedel, Michael; Müller, Norbert (2009). "Association between intracellular infectious agents and Tourette's syndrome". European Archives of Psychiatry and Clinical Neuroscience 260 (4): 359–63. PMID 19890596. doi:10.1007/s00406-009-0084-3.