Open Access Articles- Top Results for MAPK14


SymbolsMAPK14 ; CSBP; CSBP1; CSBP2; CSPB1; EXIP; Mxi2; PRKM14; PRKM15; RK; SAPK2A; p38; p38ALPHA
External IDsOMIM600289 MGI1346865 HomoloGene31777 IUPHAR: 1499 ChEMBL: 260 GeneCards: MAPK14 Gene
EC number2.7.11.24
RNA expression pattern
File:PBB GE MAPK14 202530 at tn.png
File:PBB GE MAPK14 210449 x at tn.png
File:PBB GE MAPK14 211087 x at tn.png
More reference expression data
RefSeq (mRNA)NM_001315NM_001168508
RefSeq (protein)NP_001306NP_001161980
Location (UCSC)Chr 6:
36 – 36.08 Mb
Chr 17:
28.69 – 28.75 Mb
PubMed search[1][2]

Mitogen-activated protein kinase 14, also called p38-α, is an enzyme that in humans is encoded by the MAPK14 gene.[1]

MAPK14 encodes p38α mitogen-activated protein kinase (MAPK) which is the prototypic member of the p38 MAPK family. p38 MAPKs are also known as stress-activated serine/threonine-specific kinases (SAPKs). In addition to MAPK14 for p38α, the p38 MAPK family has three additional members, including MAPK11, MAPK12 and MAPK13 which encodes p38β, p38γ and p38δ isoforms, respectively. p38α was originally identified as a tyrosine phosphorylated protein detected in activated immune cell macrophages with an essential role in inflammatory cytokine induction, such as Tumor Necrotic Factor α (TNFα).[2][3] However, p38α mediated kinase activity has been implicated in many tissues beyond immune systems. p38α is mainly activated through MAPK kinase kinase cascades and exerts its biological function via downstream substrate phosphorylation. p38α is implicated in diverse cellular function, from gene expression to programmed cell death through a network of signaling molecules and transcription factors. Pharmacological and genetic inhibition of p38α not only revealed its biological significance in physiological function but also the potential of targeting p38α in human diseases such as immune disorder and heart failure.


MAPK14 is a 41 kDa protein composed of 360 amino acids.[4][5]


The protein encoded by this gene is a member of the MAP kinase family. MAP kinases act as an integration point for multiple biochemical signals, and are involved in a wide variety of cellular processes such as proliferation, differentiation, transcription regulation and development. This kinase is activated by various environmental stresses and proinflammatory cytokines. The activation requires its phosphorylation by MAP kinase kinases (MKKs), or its autophosphorylation triggered by the interaction of MAP3K7IP1/TAB1 protein with this kinase. The substrates of this kinase include transcription regulator ATF2, MEF2C, and MAX, cell cycle regulator CDC25B, and tumor suppressor p53, which suggest the roles of this kinase in stress-related transcription and cell cycle regulation, as well as in genotoxic stress response. Four alternatively spliced transcript variants of this gene encoding distinct isoforms have been reported.[6]

p38α is ubiquitously expressed in many cell types, in contrast, p38β is highly expressed in brain and lung, p38γ mostly in skeletal muscle and nerve system, and p38δ in uterus and pancreas.[7][8] Like all MAP kinases, p38α has 11 conserved domains (Domains I to XI) and a Thr-Gly-Tyr (TGY) dual phosphorylation motif. Activation of p38 pathway has been implicated in a variety of stress response in addition to inflammation, including osmotic shock, heat, and oxidative stress.[9][10][11] The canonical pathway for p38 activation involve a cascade of protein kinases, including MAP3K such as MEKK1, 2, 3 and 4, TGFβ-activated kinase (TAK1), TAO1-3, mixed-lineage kinase 2/3 (MLK2/3), and apoptosis signal-regulating kinase 1/2 (ASK1/2), as well as MAP2Ks, such as MKK3, 6 and 4. MAP2K mediated phosphorylation of the TGY motif results in conformational change of p38 which allows kinase activation and accessibility to substrates.[12] In addition, TAK1-binding protein 1 (TAB1) and ZAP70 can induce p38 via non-canonical autophosphorylation.[13][14][15] Furthermore, acetylation of p38 at lys-53 of the ATP-binding pocket also enhances p38 activity during cellular stress[16] Under basal conditions, p38α is detected in both the nucleus and the cytoplasm. One of the consequences of p38 activation is trans-locates into the nucleus.[17] involving both p38 phosphorylation and microtuble- and dynein-dependent process.[18] In addition, one substrate of p38, MAP kinase-activated protein kinase 2 (MAPAK2 or MK2) can modulate and direct p38α localization to cytosole via direct interaction.[19] p38α activation can be reserved by dephosphorylation of the TGY motif carried out by protein phosphatases, including ser-thr protein phosphatases (PPs), protein tyrosine phosphatases (PTP), and dual-specificity phosphatases (DUSP). For example, ser/thr phosphatases PP2Cα/β suppress activity of p38s through direct interaction as well as suppression of MKKs/TAK1 in mammalian cells.[20][21] Hematopoietic PTP (HePTP) and striatal-enriched phosphatase (STEP) bind to MAPKs through a kinase-interaction motif (KIM) and inactivates them by dephosphorylating the phosphotyrosine residue in their activation loop.[22][23][24] DUSPs, which has a docking domain to MAPKs and dual-specific phosphatase activity, can also bind to p38s and dephosphorylate of both phosphotyrosine and phosphothreonine residues.[25] In addition to these phosphatases, other molecular components such as Hsp90-Cdc37 chaperone complex can also modulate p38 autophosphorylation activity and prevents non-canonical activation.[26]

p38α MAPK is implicated in cell survival/apoptosis, proliferation, differentiation, migration, mRNA stability, and inflammatory response in different cell types through variety of different target molecules[27] MK2 is one of the well-studied downstream targets of p38α. Their downstream substrates include small heat shock protein 27 (HSP27), lymphocyte-specific protein1 (LSP1), cAMP response element-binding protein (CREB), cyclooxygenase 2 (COX2), activating transcription factor 1 (ATF1), serum response factor (SRF), and mRNA-binding protein tristetraprolin (TTP)[28][29] In addition to protein kinases, many transcription factors are downstream targets of p38α, including ATF1/2/6, c-Myc, c-FOS, GATA4, MEF2A/C, SRF, STAT1, and CHOP[30][31][32][33]

Role in cardiovascular system

p38α constitutes the main p38 MAPK activity in heart. During cardiomyocyte maturation in new born mouse heart, p38α activity can regulate myocyte cytokinesis and promote cell cycle exit.[34] while inhibition of p38 activity leads to induction of mitosis in both adult and fetal cardiomyocyte.[35][36] Therefore, p38 is associated with cell-cycle arrest in mammalian cardiomyocytes and its inhibition may represent a strategy to promote cardiac regeneration in response to injury. In addition, p38α induction promotes myocyte apoptosis.[37][38] via downstream targets STAT1, CHOP, FAK, SMAD, cytochrome c, NF-kB, PTEN, and p53.[39][40][41][42][43][44][45] p38 can also target IRS-1 mediated AKT signaling and promotes myocyte death under chronic insulin stimulation.[46] Inhibition of p38 activity confers cardioprotection against ischemia reperfusion injury in heart[47][48] However, some reports demonstrated that p38 also involves in anti-apoptotic effect via phosphorylation of αβ-Crystallin or induction of Pim-3 during early response to oxidative stress or anoxic preconditioning respectively[49][50][51] More interestingly, p38α and p38β appear to have an opposite role in apoptosis.[52] Whereas p38α has a pro-apoptotic role via p53 activation, p38β has a pro-survival role via inhibition of ROS formation.[53][54] In general, chronic activation of p38 activity is viewed as pathological and pro-apoptotic, and inhibition of p38 activity is in clinical evaluation as a potential therapy to mitigate acute injury in ischemic heart failure.[55] p38 activity is also implicated in cardiac hypertrophy which is a significant feature of pathological remodeling in the diseased hearts and a major risk factor for heart failure and advert outcome. Most in vitro evidence supports that p38 activation promotes cardiomyocyte hypertrophy.[56][57][58][59] However, in vivo evidence suggest that chronic activation of p38 activity triggers restrictive cardiomyopathy with limited hypertrophy,[60] while genetic inactivation p38α in mouse heart results in an elevated cardiac hypertrophy in response to pressure overload [61][62] or swimming exercise.[63] Therefore, the functional role of p38 in cardiac hypertrophy remains controversial and yet to be further elucidated.


MAPK14 has been shown to interact with:


  1. ^ Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D et al. (January 1995). "A protein kinase involved in the regulation of inflammatory cytokine biosynthesis". Nature 372 (6508): 739–46. PMID 7997261. doi:10.1038/372739a0. 
  2. ^ Han J, Lee JD, Bibbs L, Ulevitch RJ (Aug 1994). "A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells". Science 265 (5173): 808–11. PMID 7914033. doi:10.1126/science.7914033. 
  3. ^ Han J, Lee JD, Tobias PS, Ulevitch RJ (Nov 1993). "Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14". The Journal of Biological Chemistry 268 (33): 25009–14. PMID 7693711. 
  4. ^ ]Zong NC, Li H, Li H, Lam MP, Jimenez RC, Kim CS et al. (Oct 2013). "Integration of cardiac proteome biology and medicine by a specialized knowledgebase". Circulation Research 113 (9): 1043–53. PMC 4076475. PMID 23965338. doi:10.1161/CIRCRESAHA.113.301151. 
  5. ^ "Mitogen-activated protein kinase 14". Cardiac Organellar Protein Atlas Knowledgebase (COPaKB). 
  6. ^ "Entrez Gene: MAPK14 mitogen-activated protein kinase 14". 
  7. ^ Ono K, Han J (Jan 2000). "The p38 signal transduction pathway: activation and function". Cellular Signalling 12 (1): 1–13. PMID 10676842. doi:10.1016/s0898-6568(99)00071-6. 
  8. ^ Li M, Liu J, Zhang C (2011). "Evolutionary history of the vertebrate mitogen activated protein kinases family". PloS One 6 (10): e26999. PMID 22046431. doi:10.1371/journal.pone.0026999. 
  9. ^ Johnson GL, Lapadat R (Dec 2002). "Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases". Science 298 (5600): 1911–2. PMID 12471242. doi:10.1126/science.1072682. 
  10. ^ Kyriakis JM, Avruch J (Apr 2001). "Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation". Physiological Reviews 81 (2): 807–69. PMID 11274345. 
  11. ^ Ono K, Han J (Jan 2000). "The p38 signal transduction pathway: activation and function". Cellular Signalling 12 (1): 1–13. PMID 10676842. doi:10.1016/s0898-6568(99)00071-6. 
  12. ^ Cuadrado A, Nebreda AR (Aug 2010). "Mechanisms and functions of p38 MAPK signalling". The Biochemical Journal 429 (3): 403–17. PMID 20626350. doi:10.1042/BJ20100323. 
  13. ^ Salvador JM, Mittelstadt PR, Guszczynski T, Copeland TD, Yamaguchi H, Appella E et al. (Apr 2005). "Alternative p38 activation pathway mediated by T cell receptor-proximal tyrosine kinases". Nature Immunology 6 (4): 390–5. PMID 15735648. doi:10.1038/ni1177. 
  14. ^ Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ et al. (Feb 2002). "MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha". Science 295 (5558): 1291–4. PMID 11847341. doi:10.1126/science.1067289. 
  15. ^ Tanno M, Bassi R, Gorog DA, Saurin AT, Jiang J, Heads RJ et al. (Aug 2003). "Diverse mechanisms of myocardial p38 mitogen-activated protein kinase activation: evidence for MKK-independent activation by a TAB1-associated mechanism contributing to injury during myocardial ischemia". Circulation Research 93 (3): 254–61. PMID 12829618. doi:10.1161/01.RES.0000083490.43943.85. 
  16. ^ Pillai VB, Sundaresan NR, Samant SA, Wolfgeher D, Trivedi CM, Gupta MP (Jun 2011). "Acetylation of a conserved lysine residue in the ATP binding pocket of p38 augments its kinase activity during hypertrophy of cardiomyocytes". Molecular and Cellular Biology 31 (11): 2349–63. PMID 21444723. doi:10.1128/MCB.01205-10. 
  17. ^ Zarubin T, Han J (Jan 2005). "Activation and signaling of the p38 MAP kinase pathway". Cell Research 15 (1): 11–8. PMID 15686620. doi:10.1038/ 
  18. ^ Gong X, Ming X, Deng P, Jiang Y (Aug 2010). "Mechanisms regulating the nuclear translocation of p38 MAP kinase". Journal of Cellular Biochemistry 110 (6): 1420–9. PMID 20506250. doi:10.1002/jcb.22675. 
  19. ^ Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ (Sep 1998). "Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2". Current Biology 8 (19): 1049–57. PMID 9768359. doi:10.1016/s0960-9822(98)70442-7. 
  20. ^ Hanada M, Kobayashi T, Ohnishi M, Ikeda S, Wang H, Katsura K et al. (Oct 1998). "Selective suppression of stress-activated protein kinase pathway by protein phosphatase 2C in mammalian cells". FEBS Letters 437 (3): 172–6. PMID 9824284. doi:10.1016/s0014-5793(98)01229-0. 
  21. ^ Takekawa M, Maeda T, Saito H (Aug 1998). "Protein phosphatase 2Calpha inhibits the human stress-responsive p38 and JNK MAPK pathways". The EMBO Journal 17 (16): 4744–52. PMID 9707433. doi:10.1093/emboj/17.16.4744. 
  22. ^ Pulido R, Zúñiga A, Ullrich A (Dec 1998). "PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif". The EMBO Journal 17 (24): 7337–50. PMID 9857190. doi:10.1093/emboj/17.24.7337. 
  23. ^ Saxena M, Williams S, Brockdorff J, Gilman J, Mustelin T (Apr 1999). "Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP)". The Journal of Biological Chemistry 274 (17): 11693–700. PMID 10206983. doi:10.1074/jbc.274.17.11693. 
  24. ^ Saxena M, Williams S, Gilman J, Mustelin T (Jun 1998). "Negative regulation of T cell antigen receptor signal transduction by hematopoietic tyrosine phosphatase (HePTP)". The Journal of Biological Chemistry 273 (25): 15340–4. PMID 9624114. doi:10.1074/jbc.273.25.15340. 
  25. ^ Cuadrado A, Nebreda AR (Aug 2010). "Mechanisms and functions of p38 MAPK signalling". The Biochemical Journal 429 (3): 403–17. PMID 20626350. doi:10.1042/BJ20100323. 
  26. ^ Ota A, Zhang J, Ping P, Han J, Wang Y (Apr 2010). "Specific regulation of noncanonical p38alpha activation by Hsp90-Cdc37 chaperone complex in cardiomyocyte". Circulation Research 106 (8): 1404–12. PMID 20299663. doi:10.1161/CIRCRESAHA.109.213769. 
  27. ^ Young PR (Dec 2013). "Perspective on the discovery and scientific impact of p38 MAP kinase". Journal of Biomolecular Screening 18 (10): 1156–63. PMID 23896688. doi:10.1177/1087057113497401. 
  28. ^ Rose BA, Force T, Wang Y (Oct 2010). "Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale". Physiological Reviews 90 (4): 1507–46. PMID 20959622. doi:10.1152/physrev.00054.2009. 
  29. ^ Zarubin T, Han J (Jan 2005). "Activation and signaling of the p38 MAP kinase pathway". Cell Research 15 (1): 11–8. PMID 15686620. doi:10.1038/ 
  30. ^ Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ et al. (Mar 1995). "Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine". The Journal of Biological Chemistry 270 (13): 7420–6. PMID 7535770. doi:10.1074/jbc.270.13.7420. 
  31. ^ Vlahopoulos SA, Logotheti S, Mikas D, Giarika A, Gorgoulis V, Zoumpourlis V (Apr 2008). "The role of ATF-2 in oncogenesis". BioEssays 30 (4): 314–27. PMID 18348191. doi:10.1002/bies.20734. 
  32. ^ Antholine WE, Taketa F, Wang JT, Manoharan PT, Rifkind JM (Oct 1985). "Interaction between bound cupric ion and spin-labeled cysteine beta-93 in human and horse hemoglobins". Journal of Inorganic Biochemistry 25 (2): 95–108. PMID 2997391. doi:10.1016/0162-0134(85)80018-0. 
  33. ^ Breitwieser W, Lyons S, Flenniken AM, Ashton G, Bruder G, Willington M et al. (Aug 2007). "Feedback regulation of p38 activity via ATF2 is essential for survival of embryonic liver cells". Genes & Development 21 (16): 2069–82. PMID 17699753. doi:10.1101/gad.430207. 
  34. ^ Engel FB, Schebesta M, Keating MT (Oct 2006). "Anillin localization defect in cardiomyocyte binucleation". Journal of Molecular and Cellular Cardiology 41 (4): 601–12. PMID 16889791. doi:10.1016/j.yjmcc.2006.06.012. 
  35. ^ Engel FB, Hsieh PC, Lee RT, Keating MT (Oct 2006). "FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction". Proceedings of the National Academy of Sciences of the United States of America 103 (42): 15546–51. PMID 17032753. doi:10.1073/pnas.0607382103. 
  36. ^ Engel FB, Schebesta M, Duong MT, Lu G, Ren S, Madwed JB et al. (May 2005). "p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes". Genes & Development 19 (10): 1175–87. PMID 15870258. doi:10.1101/gad.1306705. 
  37. ^ Kaiser RA, Bueno OF, Lips DJ, Doevendans PA, Jones F, Kimball TF et al. (Apr 2004). "Targeted inhibition of p38 mitogen-activated protein kinase antagonizes cardiac injury and cell death following ischemia-reperfusion in vivo". The Journal of Biological Chemistry 279 (15): 15524–30. PMID 14749328. doi:10.1074/jbc.M313717200. 
  38. ^ Sharov VG, Todor A, Suzuki G, Morita H, Tanhehco EJ, Sabbah HN (Mar 2003). "Hypoxia, angiotensin-II, and norepinephrine mediated apoptosis is stimulus specific in canine failed cardiomyocytes: a role for p38 MAPK, Fas-L and cyclin D1". European Journal of Heart Failure 5 (2): 121–9. PMID 12644001. doi:10.1016/s1388-9842(02)00254-4. 
  39. ^ Eiras S, Fernández P, Piñeiro R, Iglesias MJ, González-Juanatey JR, Lago F (Jul 2006). "Doxazosin induces activation of GADD153 and cleavage of focal adhesion kinase in cardiomyocytes en route to apoptosis". Cardiovascular Research 71 (1): 118–28. PMID 16631627. doi:10.1016/j.cardiores.2006.03.014. 
  40. ^ Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B et al. (Oct 2001). "Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death". Diabetes 50 (10): 2363–75. PMID 11574421. doi:10.2337/diabetes.50.10.2363. 
  41. ^ Ghosh J, Das J, Manna P, Sil PC (Oct 2009). "Taurine prevents arsenic-induced cardiac oxidative stress and apoptotic damage: role of NF-kappa B, p38 and JNK MAPK pathway". Toxicology and Applied Pharmacology 240 (1): 73–87. PMID 19616567. doi:10.1016/j.taap.2009.07.008. 
  42. ^ Qian J, Ling S, Castillo AC, Long B, Birnbaum Y, Ye Y (May 2012). "Regulation of phosphatase and tensin homolog on chromosome 10 in response to hypoxia". American Journal of Physiology. Heart and Circulatory Physiology 302 (9): H1806–17. PMID 22367504. doi:10.1152/ajpheart.00929.2011. 
  43. ^ Schröder D, Heger J, Piper HM, Euler G (Nov 2006). "Angiotensin II stimulates apoptosis via TGF-beta1 signaling in ventricular cardiomyocytes of rat". Journal of Molecular Medicine 84 (11): 975–83. PMID 16924465. doi:10.1007/s00109-006-0090-0. 
  44. ^ Stephanou A, Scarabelli TM, Brar BK, Nakanishi Y, Matsumura M, Knight RA et al. (Jul 2001). "Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701". The Journal of Biological Chemistry 276 (30): 28340–7. PMID 11309387. doi:10.1074/jbc.M101177200. 
  45. ^ Zhao D, Chu WF, Wu L, Li J, Liu QM, Lu YJ et al. (Aug 2010). "PAF exerts a direct apoptotic effect on the rat H9c2 cardiomyocytes in Ca2+-dependent manner". International Journal of Cardiology 143 (1): 86–93. PMID 19237210. doi:10.1016/j.ijcard.2009.01.068. 
  46. ^ Qi Y, Xu Z, Zhu Q, Thomas C, Kumar R, Feng H et al. (Nov 2013). "Myocardial loss of IRS1 and IRS2 causes heart failure and is controlled by p38α MAPK during insulin resistance". Diabetes 62 (11): 3887–900. PMID 24159000. doi:10.2337/db13-0095. 
  47. ^ Ma XL, Kumar S, Gao F, Louden CS, Lopez BL, Christopher TA et al. (Apr 1999). "Inhibition of p38 mitogen-activated protein kinase decreases cardiomyocyte apoptosis and improves cardiac function after myocardial ischemia and reperfusion". Circulation 99 (13): 1685–91. PMID 10190877. doi:10.1161/01.cir.99.13.1685. 
  48. ^ Ren J, Zhang S, Kovacs A, Wang Y, Muslin AJ (Apr 2005). "Role of p38alpha MAPK in cardiac apoptosis and remodeling after myocardial infarction". Journal of Molecular and Cellular Cardiology 38 (4): 617–23. PMID 15808838. doi:10.1016/j.yjmcc.2005.01.012. 
  49. ^ Aggeli IK, Beis I, Gaitanaki C (Jul 2008). "Oxidative stress and calpain inhibition induce alpha B-crystallin phosphorylation via p38-MAPK and calcium signalling pathways in H9c2 cells". Cellular Signalling 20 (7): 1292–302. PMID 18420382. doi:10.1016/j.cellsig.2008.02.019. 
  50. ^ Liu D, He M, Yi B, Guo WH, Que AL, Zhang JX (Nov 2009). "Pim-3 protects against cardiomyocyte apoptosis in anoxia/reoxygenation injury via p38-mediated signal pathway". The International Journal of Biochemistry & Cell Biology 41 (11): 2315–22. PMID 19505587. doi:10.1016/j.biocel.2009.05.021. 
  51. ^ Mitra A, Ray A, Datta R, Sengupta S, Sarkar S (Sep 2014). "Cardioprotective role of P38 MAPK during myocardial infarction via parallel activation of α-crystallin B and Nrf2". Journal of Cellular Physiology 229 (9): 1272–82. PMID 24464634. doi:10.1002/jcp.24565. 
  52. ^ Wang Y, Huang S, Sah VP, Ross J, Brown JH, Han J et al. (Jan 1998). "Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family". The Journal of Biological Chemistry 273 (4): 2161–8. PMID 9442057. doi:10.1074/jbc.273.4.2161. 
  53. ^ Kim JK, Pedram A, Razandi M, Levin ER (Mar 2006). "Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms". The Journal of Biological Chemistry 281 (10): 6760–7. PMID 16407188. doi:10.1074/jbc.M511024200. 
  54. ^ Liu H, Pedram A, Kim JK (Jan 2011). "Oestrogen prevents cardiomyocyte apoptosis by suppressing p38α-mediated activation of p53 and by down-regulating p53 inhibition on p38β". Cardiovascular Research 89 (1): 119–28. PMID 20724307. doi:10.1093/cvr/cvq265. 
  55. ^ Marber MS, Rose B, Wang Y (Oct 2011). "The p38 mitogen-activated protein kinase pathway--a potential target for intervention in infarction, hypertrophy, and heart failure". Journal of Molecular and Cellular Cardiology 51 (4): 485–90. PMID 21062627. doi:10.1016/j.yjmcc.2010.10.021. 
  56. ^ Liang Q, Molkentin JD (Dec 2003). "Redefining the roles of p38 and JNK signaling in cardiac hypertrophy: dichotomy between cultured myocytes and animal models". Journal of Molecular and Cellular Cardiology 35 (12): 1385–94. PMID 14654364. doi:10.1016/j.yjmcc.2003.10.001. 
  57. ^ Nemoto S, Sheng Z, Lin A (Jun 1998). "Opposing effects of Jun kinase and p38 mitogen-activated protein kinases on cardiomyocyte hypertrophy". Molecular and Cellular Biology 18 (6): 3518–26. PMID 9584192. 
  58. ^ Wang Y, Huang S, Sah VP, Ross J, Brown JH, Han J et al. (Jan 1998). "Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family". The Journal of Biological Chemistry 273 (4): 2161–8. PMID 9442057. doi:10.1074/jbc.273.4.2161. 
  59. ^ Zechner D, Thuerauf DJ, Hanford DS, McDonough PM, Glembotski CC (Oct 1997). "A role for the p38 mitogen-activated protein kinase pathway in myocardial cell growth, sarcomeric organization, and cardiac-specific gene expression". The Journal of Cell Biology 139 (1): 115–27. PMID 9314533. doi:10.1083/jcb.139.1.115. 
  60. ^ Liao P, Georgakopoulos D, Kovacs A, Zheng M, Lerner D, Pu H et al. (Oct 2001). "The in vivo role of p38 MAP kinases in cardiac remodeling and restrictive cardiomyopathy". Proceedings of the National Academy of Sciences of the United States of America 98 (21): 12283–8. PMID 11593045. doi:10.1073/pnas.211086598. 
  61. ^ Nishida K, Yamaguchi O, Hirotani S, Hikoso S, Higuchi Y, Watanabe T et al. (Dec 2004). "p38alpha mitogen-activated protein kinase plays a critical role in cardiomyocyte survival but not in cardiac hypertrophic growth in response to pressure overload". Molecular and Cellular Biology 24 (24): 10611–20. PMID 15572667. doi:10.1128/MCB.24.24.10611-10620.2004. 
  62. ^ Zhang S, Weinheimer C, Courtois M, Kovacs A, Zhang CE, Cheng AM et al. (Mar 2003). "The role of the Grb2-p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis". The Journal of Clinical Investigation 111 (6): 833–41. PMID 12639989. doi:10.1172/JCI16290. 
  63. ^ Taniike M, Yamaguchi O, Tsujimoto I, Hikoso S, Takeda T, Nakai A et al. (Jan 2008). "Apoptosis signal-regulating kinase 1/p38 signaling pathway negatively regulates physiological hypertrophy". Circulation 117 (4): 545–52. PMID 18195174. doi:10.1161/CIRCULATIONAHA.107.710434. 
  64. ^ a b Rane MJ, Coxon PY, Powell DW, Webster R, Klein JB, Pierce W et al. (Feb 2001). "p38 Kinase-dependent MAPKAPK-2 activation functions as 3-phosphoinositide-dependent kinase-2 for Akt in human neutrophils". The Journal of Biological Chemistry 276 (5): 3517–23. PMID 11042204. doi:10.1074/jbc.M005953200. 
  65. ^ Raingeaud J, Gupta S, Rogers JS, Dickens M, Han J, Ulevitch RJ et al. (Mar 1995). "Pro-inflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine". The Journal of Biological Chemistry 270 (13): 7420–6. PMID 7535770. doi:10.1074/jbc.270.13.7420. 
  66. ^ a b Chen Z, Cobb MH (May 2001). "Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2". The Journal of Biological Chemistry 276 (19): 16070–5. PMID 11279118. doi:10.1074/jbc.M100681200. 
  67. ^ Tournier C, Whitmarsh AJ, Cavanagh J, Barrett T, Davis RJ (Jul 1997). "Mitogen-activated protein kinase kinase 7 is an activator of the c-Jun NH2-terminal kinase". Proceedings of the National Academy of Sciences of the United States of America 94 (14): 7337–42. PMC 23822. PMID 9207092. doi:10.1073/pnas.94.14.7337. 
  68. ^ a b Bulavin DV, Higashimoto Y, Popoff IJ, Gaarde WA, Basrur V, Potapova O et al. (May 2001). "Initiation of a G2/M checkpoint after ultraviolet radiation requires p38 kinase". Nature 411 (6833): 102–7. PMID 11333986. doi:10.1038/35075107. 
  69. ^ Sayed M, Kim SO, Salh BS, Issinger OG, Pelech SL (Jun 2000). "Stress-induced activation of protein kinase CK2 by direct interaction with p38 mitogen-activated protein kinase". The Journal of Biological Chemistry 275 (22): 16569–73. PMID 10747897. doi:10.1074/jbc.M000312200. 
  70. ^ a b c Tanoue T, Yamamoto T, Maeda R, Nishida E (Jul 2001). "A Novel MAPK phosphatase MKP-7 acts preferentially on JNK/SAPK and p38 alpha and beta MAPKs". The Journal of Biological Chemistry 276 (28): 26629–39. PMID 11359773. doi:10.1074/jbc.M101981200. 
  71. ^ a b c Tanoue T, Maeda R, Adachi M, Nishida E (Feb 2001). "Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions". The EMBO Journal 20 (3): 466–79. PMC 133461. PMID 11157753. doi:10.1093/emboj/20.3.466. 
  72. ^ Tanoue T, Moriguchi T, Nishida E (Jul 1999). "Molecular cloning and characterization of a novel dual specificity phosphatase, MKP-5". The Journal of Biological Chemistry 274 (28): 19949–56. PMID 10391943. doi:10.1074/jbc.274.28.19949. 
  73. ^ Masuda K, Shima H, Watanabe M, Kikuchi K (Oct 2001). "MKP-7, a novel mitogen-activated protein kinase phosphatase, functions as a shuttle protein". The Journal of Biological Chemistry 276 (42): 39002–11. PMID 11489891. doi:10.1074/jbc.M104600200. 
  74. ^ Slack DN, Seternes OM, Gabrielsen M, Keyse SM (May 2001). "Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1". The Journal of Biological Chemistry 276 (19): 16491–500. PMID 11278799. doi:10.1074/jbc.M010966200. 
  75. ^ Kim MJ, Park BJ, Kang YS, Kim HJ, Park JH, Kang JW et al. (Jul 2003). "Downregulation of FUSE-binding protein and c-myc by tRNA synthetase cofactor p38 is required for lung cell differentiation". Nature Genetics 34 (3): 330–6. PMID 12819782. doi:10.1038/ng1182. 
  76. ^ Faccio L, Fusco C, Chen A, Martinotti S, Bonventre JV, Zervos AS (Jan 2000). "Characterization of a novel human serine protease that has extensive homology to bacterial heat shock endoprotease HtrA and is regulated by kidney ischemia". The Journal of Biological Chemistry 275 (4): 2581–8. PMID 10644717. doi:10.1074/jbc.275.4.2581. 
  77. ^ Ku NO, Azhar S, Omary MB (Mar 2002). "Keratin 8 phosphorylation by p38 kinase regulates cellular keratin filament reorganization: modulation by a keratin 1-like disease causing mutation". The Journal of Biological Chemistry 277 (13): 10775–82. PMID 11788583. doi:10.1074/jbc.M107623200. 
  78. ^ a b Sanz-Moreno V, Casar B, Crespo P (May 2003). "p38alpha isoform Mxi2 binds to extracellular signal-regulated kinase 1 and 2 mitogen-activated protein kinase and regulates its nuclear activity by sustaining its phosphorylation levels". Molecular and Cellular Biology 23 (9): 3079–90. PMC 153192. PMID 12697810. doi:10.1128/mcb.23.9.3079-3090.2003. 
  79. ^ Raingeaud J, Whitmarsh AJ, Barrett T, Dérijard B, Davis RJ (Mar 1996). "MKK3- and MKK6-regulated gene expression is mediated by the p38 mitogen-activated protein kinase signal transduction pathway". Molecular and Cellular Biology 16 (3): 1247–55. PMC 231107. PMID 8622669. 
  80. ^ Stein B, Brady H, Yang MX, Young DB, Barbosa MS (May 1996). "Cloning and characterization of MEK6, a novel member of the mitogen-activated protein kinase kinase cascade". The Journal of Biological Chemistry 271 (19): 11427–33. PMID 8626699. doi:10.1074/jbc.271.19.11427. 
  81. ^ Ge B, Gram H, Di Padova F, Huang B, New L, Ulevitch RJ et al. (Feb 2002). "MAPKK-independent activation of p38alpha mediated by TAB1-dependent autophosphorylation of p38alpha". Science 295 (5558): 1291–4. PMID 11847341. doi:10.1126/science.1067289. 
  82. ^ Janknecht R (Nov 2001). "Cell type-specific inhibition of the ETS transcription factor ER81 by mitogen-activated protein kinase-activated protein kinase 2". The Journal of Biological Chemistry 276 (45): 41856–61. PMID 11551945. doi:10.1074/jbc.M106630200. 
  83. ^ Zhao M, New L, Kravchenko VV, Kato Y, Gram H, di Padova F et al. (Jan 1999). "Regulation of the MEF2 family of transcription factors by p38". Molecular and Cellular Biology 19 (1): 21–30. PMC 83862. PMID 9858528. 
  84. ^ Yang SH, Galanis A, Sharrocks AD (Jun 1999). "Targeting of p38 mitogen-activated protein kinases to MEF2 transcription factors". Molecular and Cellular Biology 19 (6): 4028–38. PMC 104362. PMID 10330143. 
  85. ^ Pierrat B, Correia JS, Mary JL, Tomás-Zuber M, Lesslauer W (Nov 1998). "RSK-B, a novel ribosomal S6 kinase family member, is a CREB kinase under dominant control of p38alpha mitogen-activated protein kinase (p38alphaMAPK)". The Journal of Biological Chemistry 273 (45): 29661–71. PMID 9792677. doi:10.1074/jbc.273.45.29661. 
  86. ^ Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N et al. (Oct 2005). "Towards a proteome-scale map of the human protein-protein interaction network". Nature 437 (7062): 1173–8. PMID 16189514. doi:10.1038/nature04209. 

Further reading


External links