Adverts

Open Access Articles- Top Results for Microarray

International Journal of Innovative Research in Computer and Communication Engineering
Statistical Inference and Reconstruction of Gene Regulatory Network from Observational Expression Profile
International Journal of Innovative Research in Computer and Communication Engineering
Computational Method for Reconstruction of Gene Regulatory Network Using Microarray Data
International Journal of Innovative Research in Science, Engineering and Technology
Classification of Microarray Data Based On Feature Selection Method

Microarray

File:Venn Diagram for bioMEMS, LOC, and MTAS.svg
A Venn diagram outlining and contrasting some aspects of the fields of bio-MEMS, lab-on-a-chip, μTAS.
#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.style="padding-top:0.75em;"#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.Search Wiktionary#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.style="padding-top:0.75em;"#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.Definitions from Wiktionary #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.Search Wikibooks#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.Textbooks from Wikibooks #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.Search Wikiversity#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.Learning resources from Wikiversity

A microarray is a multiplex lab-on-a-chip. It is a 2D array on a solid substrate (usually a glass slide or silicon thin-film cell) that assays large amounts of biological material using high-throughput screening miniaturized, multiplexed and parallel processing and detection methods. The concept and methodology of microarrays was first introduced and illustrated in antibody microarrays (also referred to as antibody matrix) by Tse Wen Chang in 1983 in a scientific publication[1] and a series of patents.[2] The "gene chip" industry started to grow significantly after the 1995 Science Paper by the Ron Davis and Pat Brown labs at Stanford University.[3] With the establishment of companies, such as Affymetrix, Agilent, Applied Microarrays, Arrayit, Illumina, and others, the technology of DNA microarrays has become the most sophisticated and the most widely used, while the use of protein, peptide and carbohydrate microarrays[4] are expanding.

Types of microarrays include:

People in the field of CMOS biotechnology are developing new kinds of microarrays. Once fed magnetic nanoparticles, individual cells can be moved independently and simultaneously on a microarray of magnetic coils. A microarray of nuclear magnetic resonance microcoils is under development.[5]

Notes

  1. ^ Tse-Wen Chang, TW (1983). "Binding of cells to matrixes of distinct antibodies coated on solid surface". Journal of Immunological Methods 65 (1–2): 217–23. PMID 6606681. doi:10.1016/0022-1759(83)90318-6. 
  2. ^ http://www.google.com/patents/US4591570; http://www.google.com/patents/US4829010; http://www.google.com/patents/US5100777.[full citation needed]
  3. ^ Schena, M.; Shalon, D.; Davis, R. W.; Brown, P. O. (1995). "Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray". Science 270 (5235): 467–70. PMID 7569999. doi:10.1126/science.270.5235.467. 
  4. ^ "Photogenerated glycan arrays identify immunogenic sugar moieties of Bacillus anthracis exosporium". Proteomics 7 (2): 180–184. 2007. doi:10.1002/pmic.200600478. 
  5. ^ Ham, Donhee; Westervelt, Robert M. (2007). "The silicon that Moves and Feels Small Living Things". IEEE Solid-State Circuits Newsletter 12 (4): 4–9. doi:10.1109/N-SSC.2007.4785650.