Open Access Articles- Top Results for Mothers against decapentaplegic homolog 7

Mothers against decapentaplegic homolog 7

SymbolsSMAD7 ; CRCS3; MADH7; MADH8
External IDsOMIM602932 MGI1100518 HomoloGene4314 GeneCards: SMAD7 Gene
RNA expression pattern
File:PBB GE SMAD7 204790 at tn.png
More reference expression data
RefSeq (mRNA)NM_001190821NM_001042660
RefSeq (protein)NP_001177750NP_001036125
Location (UCSC)Chr 18:
46.45 – 46.48 Mb
Chr 18:
75.37 – 75.4 Mb
PubMed search[1][2]

Mothers against decapentaplegic homolog 7 or SMAD7 is a protein that in humans is encoded by the SMAD7 gene.[1]

SMAD7 is a protein that, as its name describes, is a homolog of the Drosophila gene: "Mothers against decapentaplegic". It belongs to the SMAD family of proteins, which belong to the TGFβ superfamily of ligands. Like many other TGFβ family members, SMAD7 is involved in cell signalling. It is a TGFβ type 1 receptor antagonist. It blocks TGFβ1 and activin associating with the receptor, blocking access to SMAD2. It is an inhibitory SMAD (I-SMAD) and is enhanced by SMURF2.

Smad7 enhances muscle differentiation.


Smads proteins contain two conserved domains. The Mad Homology domain 1 (MH1 domain) is at the N-terminal and the Mad Homology domain 2 (MH2 domain) is at the C-terminal. Between them there is a linker region which is full of regulatory sites. The MH1 domain has DNA binding activity while the MH2 domain has transcriptional activity.[2] The linker region contains important regulatory peptide motifs including potential phosphorylation sites for mitogen-activated protein kinases(MAPKs), Erk-family MAP kinases,[3] the Ca2+ /calmodulin-dependent protein kinase II (CamKII)[4] and protein kinase C (PKC).[5] Smad7 do not have the MH1 domain. A proline-tyrosine (PY) motif presents at its linker region enables its interaction with the WW domains of the E3 ubiquitin ligase, the Smad ubiquitination-related factors (Smurf2). It resides predominantly in the nucleus at basal state and translocates to the cytoplasm by TGF-β stimulation.[6]


SMAD7 inhibits TGF-β signaling by preventing formation of Smad2/Smad4 complexes which initiate the TGF-β signaling. It interacts with activated TGF-β type I receptor therefore block the association, phosphorylation and activation of Smad2.[7] By occupying type I receptors for Activin and bone morphogenetic protein (BMP), it also plays a role in negative feedback of these pathways.[8][9]

Upon TGF- β treatment, Smad7 binds to discrete regions of Pellino-1 via distinct regions of the Smad MH2 domains. The interaction blocks the formation of the IRAK1-mediated IL-1R/TLR signaling complex therefore abrogates NF-κB activity, which subsequently causes reduced expression of pro-inflammatory genes.[10]

While Smad7 is induced by TGF-β, it is also induced by other stimuli, such as epidermal growth factor (EGF), interferon-γ and tumor necrosis factor (TNF)-α. Therefore it provides a cross-talk between TGF-β signaling and other cellular signaling pathways.[11]

Role in cancer

A mutation located in SMAD7 gene is a cause of susceptibility to colorectal cancer (CRC) type 3.[1] Perturbation of Smad7 and suppression of TGF-β signaling was found to be evolved in CRC.[12] Case control studies and meta-analysis in Asian and European populations also provided evidence that this mutation is associated with colorectal cancer risk.[13]

TGF-β is one of the important growth factor in pancreatic cancer. By controlling the TGF-β pathway, smad7 is believed to be related to this disease. Some previous study showed over-expression of Smad7 in pancreatic cells[14][15][16] but there was a recent study showed a low Smad7 expression. The role of Smad7 in pancreatic cancer is still controversial.[17]

Over-expression or constitutive activation of epidermal growth factor receptor (EGFR) can promote tumor processes.[18][19] EGF-induced MMP-9 expression enhance tumor invasion and metastasis in some kinds of tumor cells such as breast cancer and ovarian cancer.[20][21] Smad7 exerts an inhibitory effect on EGF signaling pathway. Therefore it may play a role in prevention of cancer metastasis.[22]

Use in Pharmacology

SMAD7 signaling has been studied in a recent Celgene Phase II trial of GED-0301, which interacts with the SMAD7 pathway. This drug was studied in patients with Crohn's disease.[23]


Mothers against decapentaplegic homolog 7 has been shown to interact with:


  1. ^ a b EntrezGene 4092
  2. ^ Shi Y, Hata A, Lo RS, Massagué J, Pavletich NP (July 1997). "A structural basis for mutational inactivation of the tumour suppressor Smad4". Nature 388 (6637): 87–93. PMID 9214508. doi:10.1038/40431. 
  3. ^ Kretzschmar M, Doody J, Massagué J (October 1997). "Opposing BMP and EGF signalling pathways converge on the TGF-beta family mediator Smad1". Nature 389 (6651): 618–22. PMID 9335504. doi:10.1038/39348. 
  4. ^ Wicks SJ, Lui S, Abdel-Wahab N, Mason RM, Chantry A (November 2000). "Inactivation of smad-transforming growth factor beta signaling by Ca(2+)-calmodulin-dependent protein kinase II". Mol. Cell. Biol. 20 (21): 8103–11. PMC 86420. PMID 11027280. doi:10.1128/MCB.20.21.8103-8111.2000. 
  5. ^ Yakymovych I, Ten Dijke P, Heldin CH, Souchelnytskyi S (March 2001). "Regulation of Smad signaling by protein kinase C". FASEB J. 15 (3): 553–5. PMID 11259364. doi:10.1096/fj.00-0474fje. 
  6. ^ Itóh S, Landström M, Hermansson A, Itoh F, Heldin CH, Heldin NE et al. (October 1998). "Transforming growth factor beta1 induces nuclear export of inhibitory Smad7". J. Biol. Chem. 273 (44): 29195–201. PMID 9786930. doi:10.1074/jbc.273.44.29195. 
  7. ^ a b Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW et al. (June 1997). "The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling". Cell 89 (7): 1165–73. PMID 9215638. doi:10.1016/S0092-8674(00)80303-7. 
  8. ^ Ishisaki A, Yamato K, Hashimoto S, Nakao A, Tamaki K, Nonaka K et al. (May 1999). "Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein- and activin-mediated growth arrest and apoptosis in B cells". J. Biol. Chem. 274 (19): 13637–42. PMID 10224135. doi:10.1074/jbc.274.19.13637. 
  9. ^ Nakao A, Afrakhte M, Morén A, Nakayama T, Christian JL, Heuchel R et al. (October 1997). "Identification of Smad7, a TGFbeta-inducible antagonist of TGF-β signalling". Nature 389 (6651): 631–5. PMID 9335507. doi:10.1038/39369. 
  10. ^ Lee YS, Kim JH, Kim ST, Kwon JY, Hong S, Kim SJ et al. (March 2010). "Smad7 and Smad6 bind to discrete regions of Pellino-1 via their MH2 domains to mediate TGF-beta1-induced negative regulation of IL-1R/TLR signaling". Biochem. Biophys. Res. Commun. 393 (4): 836–43. PMID 20171181. doi:10.1016/j.bbrc.2010.02.094. 
  11. ^ Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A, Beg AA, Rojkind M et al. (January 2000). "A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA". Genes Dev. 14 (2): 187–97. PMC 316349. PMID 10652273. doi:10.1101/gad.14.2.187 (inactive 2015-01-01). 
  12. ^ Halder SK, Rachakonda G, Deane NG, Datta PK (September 2008). "Smad7 induces hepatic metastasis in colorectal cancer". Br. J. Cancer 99 (6): 957–65. PMC 2538763. PMID 18781153. doi:10.1038/sj.bjc.6604562. 
  13. ^ Song Q, Zhu B, Hu W, Cheng L, Gong H, Xu B et al. (2012). Peterlongo P, ed. "A common SMAD7 variant is associated with risk of colorectal cancer: evidence from a case-control study and a meta-analysis". PLoS ONE 7 (3): e33318. PMC 3310071. PMID 22457752. doi:10.1371/journal.pone.0033318. 
  14. ^ Kleeff J, Ishiwata T, Maruyama H, Friess H, Truong P, Büchler MW et al. (September 1999). "The TGF-beta signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer". Oncogene 18 (39): 5363–72. PMID 10498890. doi:10.1038/sj.onc.1202909. 
  15. ^ Guo J, Kleeff J, Zhao Y, Li J, Giese T, Esposito I et al. (May 2006). "Yes-associated protein (YAP65) in relation to Smad7 expression in human pancreatic ductal adenocarcinoma". Int. J. Mol. Med. 17 (5): 761–7. PMID 16596258. doi:10.3892/ijmm.17.5.761. 
  16. ^ Arnold NB, Ketterer K, Kleeff J, Friess H, Büchler MW, Korc M (May 2004). "Thioredoxin is downstream of Smad7 in a pathway that promotes growth and suppresses cisplatin-induced apoptosis in pancreatic cancer". Cancer Res. 64 (10): 3599–606. PMID 15150118. doi:10.1158/0008-5472.CAN-03-2999. 
  17. ^ Singh P, Wig JD, Srinivasan R (2011). "The Smad family and its role in pancreatic cancer". Indian J Cancer 48 (3): 351–60. PMID 21921337. doi:10.4103/0019-509X.84939. 
  18. ^ Salomon DS, Brandt R, Ciardiello F, Normanno N (July 1995). "Epidermal growth factor-related peptides and their receptors in human malignancies". Crit. Rev. Oncol. Hematol. 19 (3): 183–232. PMID 7612182. doi:10.1016/1040-8428(94)00144-I. 
  19. ^ Burgess AW, Cho HS, Eigenbrot C, Ferguson KM, Garrett TP, Leahy DJ et al. (September 2003). "An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors". Mol. Cell 12 (3): 541–52. PMID 14527402. doi:10.1016/S1097-2765(03)00350-2. 
  20. ^ Kim S, Choi JH, Lim HI, Lee SK, Kim WW, Cho S et al. (June 2009). "EGF-induced MMP-9 expression is mediated by the JAK3/ERK pathway, but not by the JAK3/STAT-3 pathway in a SKBR3 breast cancer cell line". Cell. Signal. 21 (6): 892–8. PMID 19385051. doi:10.1016/j.cellsig.2009.01.034. 
  21. ^ Ellerbroek SM, Hudson LG, Stack MS (October 1998). "Proteinase requirements of epidermal growth factor-induced ovarian cancer cell invasion". Int. J. Cancer 78 (3): 331–7. PMID 9766568. doi:10.1002/(SICI)1097-0215(19981029)78:3<331::AID-IJC13>3.0.CO;2-9. 
  22. ^ Kim S, Han J, Lee SK, Koo M, Cho DH, Bae SY et al. (January 2012). "Smad7 acts as a negative regulator of the epidermal growth factor (EGF) signaling pathway in breast cancer cells". Cancer Lett. 314 (2): 147–54. PMID 22033246. doi:10.1016/j.canlet.2011.09.024. 
  23. ^ "Phase II Data for Celgene's Investigational Oral GED-0301 for Patients with Active Crohn's Disease Published in New England Journal of Medicine". Celgene. Celgene Corporation. Retrieved 2015-04-20. 
  24. ^ Edlund S, Lee SY, Grimsby S, Zhang S, Aspenström P, Heldin CH et al. (February 2005). "Interaction between Smad7 and beta-catenin: importance for transforming growth factor beta-induced apoptosis". Mol. Cell. Biol. 25 (4): 1475–88. PMC 548008. PMID 15684397. doi:10.1128/MCB.25.4.1475-1488.2005. 
  25. ^ Grönroos E, Hellman U, Heldin CH, Ericsson J (September 2002). "Control of Smad7 stability by competition between acetylation and ubiquitination". Mol. Cell 10 (3): 483–93. PMID 12408818. doi:10.1016/S1097-2765(02)00639-1. 
  26. ^ Edlund S, Bu S, Schuster N, Aspenström P, Heuchel R, Heldin NE et al. (February 2003). "Transforming growth factor-beta1 (TGF-beta)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-beta-activated kinase 1 and mitogen-activated protein kinase kinase 3". Mol. Biol. Cell 14 (2): 529–44. PMC 149990. PMID 12589052. doi:10.1091/mbc.02-03-0037. 
  27. ^ Yanagisawa M, Nakashima K, Takeda K, Ochiai W, Takizawa T, Ueno M et al. (December 2001). "Inhibition of BMP2-induced, TAK1 kinase-mediated neurite outgrowth by Smad6 and Smad7". Genes Cells 6 (12): 1091–9. PMID 11737269. doi:10.1046/j.1365-2443.2001.00483.x. 
  28. ^ Imoto S, Sugiyama K, Muromoto R, Sato N, Yamamoto T, Matsuda T (September 2003). "Regulation of transforming growth factor-beta signaling by protein inhibitor of activated STAT, PIASy through Smad3". J. Biol. Chem. 278 (36): 34253–8. PMID 12815042. doi:10.1074/jbc.M304961200. 
  29. ^ a b Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M, Hanyu A et al. (December 2003). "Arkadia amplifies TGF-beta superfamily signalling through degradation of Smad7". EMBO J. 22 (24): 6458–70. PMC 291827. PMID 14657019. doi:10.1093/emboj/cdg632. 
  30. ^ a b c Datta PK, Moses HL (May 2000). "STRAP and Smad7 synergize in the inhibition of transforming growth factor beta signaling". Mol. Cell. Biol. 20 (9): 3157–67. PMC 85610. PMID 10757800. doi:10.1128/MCB.20.9.3157-3167.2000. 
  31. ^ Lebrun JJ, Takabe K, Chen Y, Vale W (January 1999). "Roles of pathway-specific and inhibitory Smads in activin receptor signaling". Mol. Endocrinol. 13 (1): 15–23. PMID 9892009. doi:10.1210/mend.13.1.0218. 
  32. ^ Topper JN, Cai J, Qiu Y, Anderson KR, Xu YY, Deeds JD et al. (August 1997). "Vascular MADs: two novel MAD-related genes selectively inducible by flow in human vascular endothelium". Proc. Natl. Acad. Sci. U.S.A. 94 (17): 9314–9. PMC 23174. PMID 9256479. doi:10.1073/pnas.94.17.9314. 
  33. ^ a b Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K (January 2004). "Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibroblasts". J. Clin. Invest. 113 (2): 253–64. PMC 310747. PMID 14722617. doi:10.1172/JCI16269. 
  34. ^ a b Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH et al. (December 2000). "Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation". Mol. Cell 6 (6): 1365–75. PMID 11163210. doi:10.1016/S1097-2765(00)00134-9. 
  35. ^ Lee YS, Han JM, Son SH, Choi JW, Jeon EJ, Bae SC et al. (July 2008). "AIMP1/p43 downregulates TGF-beta signaling via stabilization of smurf2". Biochem. Biophys. Res. Commun. 371 (3): 395–400. PMID 18448069. doi:10.1016/j.bbrc.2008.04.099. 
  36. ^ Mochizuki T, Miyazaki H, Hara T, Furuya T, Imamura T, Watabe T et al. (July 2004). "Roles for the MH2 domain of Smad7 in the specific inhibition of transforming growth factor-beta superfamily signaling". J. Biol. Chem. 279 (30): 31568–74. PMID 15148321. doi:10.1074/jbc.M313977200. 
  37. ^ Ferrigno O, Lallemand F, Verrecchia F, L'Hoste S, Camonis J, Atfi A et al. (July 2002). "Yes-associated protein (YAP65) interacts with Smad7 and potentiates its inhibitory activity against TGF-beta/Smad signaling". Oncogene 21 (32): 4879–84. PMID 12118366. doi:10.1038/sj.onc.1205623. 

Further reading