Open Access Articles- Top Results for NFKB1


SymbolsNFKB1 ; EBP-1; KBF1; NF-kB1; NF-kappa-B; NF-kappaB; NFKB-p105; NFKB-p50; NFkappaB; p105; p50
External IDsOMIM164011 MGI97312 HomoloGene2971 ChEMBL: 3251 GeneCards: NFKB1 Gene
RNA expression pattern
File:PBB GE NFKB1 209239 at.png
More reference expression data
RefSeq (mRNA)NM_001165412NM_008689
RefSeq (protein)NP_001158884NP_032715
Location (UCSC)Chr 4:
103.42 – 103.54 Mb
Chr 3:
135.58 – 135.69 Mb
PubMed search[1][2]

Nuclear factor NF-kappa-B p105 subunit is a protein that in humans is encoded by the NFKB1 gene.[1]

This gene encodes a 105 kD protein which can undergo cotranslational processing by the 26S proteasome to produce a 50 kD protein. The 105 kD protein is a Rel protein-specific transcription inhibitor and the 50 kD protein is a DNA binding subunit of the NF-kappaB (NF-κB) protein complex. NF-κB is a transcription factor that is activated by various intra- and extra-cellular stimuli such as cytokines, oxidant-free radicals, ultraviolet irradiation, and bacterial or viral products. Activated NF-κB translocates into the nucleus and stimulates the expression of genes involved in a wide variety of biological functions; over 200 known genes are targets of NF-κB in various cell types, under specific conditions. Inappropriate activation of NF-κB has been associated with a number of inflammatory diseases while persistent inhibition of NF-κB leads to inappropriate immune cell development or delayed cell growth.[2]

Model organisms

Model organisms have been used in the study of NFKB1 function. A conditional knockout mouse line, called Nfkb1tm1a(KOMP)Wtsi[10][11] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[12][13][14]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[8][15] Twenty five tests were carried out on mutant mice and six significant abnormalities were observed.[8] Female homozygotes had a decreased respiratory quotient, increased circulating alkaline phosphatase level and increased leukocyte cell number. Male homozygotes showed an increased susceptibility to Salmonella infection, while homozygotes of both sex had decreased IgG1 and decreased regulatory T cell and NK cell numbers.[8]


NFKB1 has been shown to interact with:


  1. ^ Meyer R, Hatada EN, Hohmann HP, Haiker M, Bartsch C, Röthlisberger U et al. (March 1991). "Cloning of the DNA-binding subunit of human nuclear factor kappa B: the level of its mRNA is strongly regulated by phorbol ester or tumor necrosis factor alpha". Proc Natl Acad Sci U S A 88 (3): 966–70. PMC 50935. PMID 1992489. doi:10.1073/pnas.88.3.966. 
  2. ^ "Entrez Gene: NF-κB nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 (p105)". 
  3. ^ "Eye morphology data for Nfkb1". Wellcome Trust Sanger Institute. 
  4. ^ "Clinical chemistry data for Nfkb1". Wellcome Trust Sanger Institute. 
  5. ^ "Haematology data for Nfkb1". Wellcome Trust Sanger Institute. 
  6. ^ "Peripheral blood lymphocytes data for Nfkb1". Wellcome Trust Sanger Institute. 
  7. ^ "Salmonella infection data for Nfkb1". Wellcome Trust Sanger Institute. 
  8. ^ a b c d Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  9. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  10. ^ "International Knockout Mouse Consortium". 
  11. ^ "Mouse Genome Informatics". 
  12. ^ Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V et al. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. PMC 3572410. PMID 21677750. doi:10.1038/nature10163. 
  13. ^ Dolgin E (2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. PMID 21677718. doi:10.1038/474262a. 
  14. ^ Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell 128 (1): 9–13. PMID 17218247. doi:10.1016/j.cell.2006.12.018. 
  15. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. PMC 3218837. PMID 21722353. doi:10.1186/gb-2011-12-6-224. 
  16. ^ a b Heissmeyer V, Krappmann D, Wulczyn FG, Scheidereit C (September 1999). "NF-kappaB p105 is a target of IkappaB kinases and controls signal induction of Bcl-3-p50 complexes". EMBO J. 18 (17): 4766–78. PMC 1171549. PMID 10469655. doi:10.1093/emboj/18.17.4766. 
  17. ^ Thornburg NJ, Pathmanathan R, Raab-Traub N (December 2003). "Activation of nuclear factor-kappaB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma". Cancer Res. 63 (23): 8293–301. PMID 14678988. 
  18. ^ Naumann M, Wulczyn FG, Scheidereit C (January 1993). "The NF-kappa B precursor p105 and the proto-oncogene product Bcl-3 are I kappa B molecules and control nuclear translocation of NF-kappa B". EMBO J. 12 (1): 213–22. PMC 413194. PMID 8428580. 
  19. ^ Zhong H, May MJ, Jimi E, Ghosh S (March 2002). "The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1". Mol. Cell 9 (3): 625–36. PMID 11931769. doi:10.1016/s1097-2765(02)00477-x. 
  20. ^ Noro B, Licheri B, Sgarra R, Rustighi A, Tessari MA, Chau KY et al. (April 2003). "Molecular dissection of the architectural transcription factor HMGA2". Biochemistry 42 (15): 4569–77. PMID 12693954. doi:10.1021/bi026605k. 
  21. ^ Heissmeyer V, Krappmann D, Hatada EN, Scheidereit C (February 2001). "Shared pathways of IkappaB kinase-induced SCF(betaTrCP)-mediated ubiquitination and degradation for the NF-kappaB precursor p105 and IkappaBalpha". Mol. Cell. Biol. 21 (4): 1024–35. PMC 99557. PMID 11158290. doi:10.1128/MCB.21.4.1024-1035.2001. 
  22. ^ Besta F, Massberg S, Brand K, Müller E, Page S, Grüner S et al. (October 2002). "Role of beta(3)-endonexin in the regulation of NF-kappaB-dependent expression of urokinase-type plasminogen activator receptor". J. Cell. Sci. 115 (Pt 20): 3879–88. PMID 12244126. doi:10.1242/jcs.00081. 
  23. ^ Hay DC, Kemp GD, Dargemont C, Hay RT (May 2001). "Interaction between hnRNPA1 and IkappaBalpha is required for maximal activation of NF-kappaB-dependent transcription". Mol. Cell. Biol. 21 (10): 3482–90. PMC 100270. PMID 11313474. doi:10.1128/MCB.21.10.3482-3490.2001. 
  24. ^ Malek S, Huxford T, Ghosh G (September 1998). "Ikappa Balpha functions through direct contacts with the nuclear localization signals and the DNA binding sequences of NF-kappaB". J. Biol. Chem. 273 (39): 25427–35. PMID 9738011. doi:10.1074/jbc.273.39.25427. 
  25. ^ Ferrier R, Nougarede R, Doucet S, Kahn-Perles B, Imbert J, Mathieu-Mahul D (January 1999). "Physical interaction of the bHLH LYL1 protein and NF-kappaB1 p105". Oncogene 18 (4): 995–1005. PMID 10023675. doi:10.1038/sj.onc.1202374. 
  26. ^ Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG (July 2002). "Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein". Cell 110 (1): 55–67. PMID 12150997. doi:10.1016/S0092-8674(02)00809-7. 
  27. ^ a b c d Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K et al. (February 2004). "A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway". Nat. Cell Biol. 6 (2): 97–105. PMID 14743216. doi:10.1038/ncb1086. 
  28. ^ Belich MP, Salmerón A, Johnston LH, Ley SC (January 1999). "TPL-2 kinase regulates the proteolysis of the NF-kappaB-inhibitory protein NF-kappaB1 p105". Nature 397 (6717): 363–8. PMID 9950430. doi:10.1038/16946. 
  29. ^ Heppner C, Bilimoria KY, Agarwal SK, Kester M, Whitty LJ, Guru SC et al. (August 2001). "The tumor suppressor protein menin interacts with NF-kappaB proteins and inhibits NF-kappaB-mediated transactivation". Oncogene 20 (36): 4917–25. PMID 11526476. doi:10.1038/sj.onc.1204529. 
  30. ^ Li Z, Nabel GJ (October 1997). "A new member of the I kappaB protein family, I kappaB epsilon, inhibits RelA (p65)-mediated NF-kappaB transcription". Mol. Cell. Biol. 17 (10): 6184–90. PMC 232469. PMID 9315679. 
  31. ^ Guan E, Wang J, Laborda J, Norcross M, Baeuerle PA, Hoffman T (May 1996). "T cell leukemia-associated human Notch/translocation-associated Notch homologue has I kappa B-like activity and physically interacts with nuclear factor-kappa B proteins in T cells". J. Exp. Med. 183 (5): 2025–32. PMC 2192574. PMID 8642313. doi:10.1084/jem.183.5.2025. 
  32. ^ Wang J, Shelly L, Miele L, Boykins R, Norcross MA, Guan E (July 2001). "Human Notch-1 inhibits NF-kappa B activity in the nucleus through a direct interaction involving a novel domain". J. Immunol. 167 (1): 289–95. PMID 11418662. doi:10.4049/jimmunol.167.1.289. 
  33. ^ Lee SK, Na SY, Jung SY, Choi JE, Jhun BH, Cheong J et al. (June 2000). "Activating protein-1, nuclear factor-kappaB, and serum response factor as novel target molecules of the cancer-amplified transcription coactivator ASC-2". Mol. Endocrinol. 14 (6): 915–25. PMID 10847592. doi:10.1210/mend.14.6.0471. 
  34. ^ Na SY, Lee SK, Han SJ, Choi HS, Im SY, Lee JW (May 1998). "Steroid receptor coactivator-1 interacts with the p50 subunit and coactivates nuclear factor kappaB-mediated transactivations". J. Biol. Chem. 273 (18): 10831–4. PMID 9556555. doi:10.1074/jbc.273.18.10831. 
  35. ^ Palvimo JJ, Reinikainen P, Ikonen T, Kallio PJ, Moilanen A, Jänne OA (September 1996). "Mutual transcriptional interference between RelA and androgen receptor". J. Biol. Chem. 271 (39): 24151–6. PMID 8798655. doi:10.1074/jbc.271.39.24151. 
  36. ^ Yu Z, Zhang W, Kone BC (October 2002). "Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB". Biochem. J. 367 (Pt 1): 97–105. PMC 1222853. PMID 12057007. doi:10.1042/BJ20020588. 
  37. ^ Shen CH, Stavnezer J (June 1998). "Interaction of stat6 and NF-kappaB: direct association and synergistic activation of interleukin-4-induced transcription". Mol. Cell. Biol. 18 (6): 3395–404. PMC 108921. PMID 9584180. 
  38. ^ Ayroldi E, Migliorati G, Bruscoli S, Marchetti C, Zollo O, Cannarile L et al. (August 2001). "Modulation of T-cell activation by the glucocorticoid-induced leucine zipper factor via inhibition of nuclear factor kappaB". Blood 98 (3): 743–53. PMID 11468175. doi:10.1182/blood.v98.3.743. 

Further reading


External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.