Journals

Conferences

Open Access Articles- Top Results for Pierre-Simon Laplace

Pierre-Simon Laplace

"Laplace" redirects here. For other uses, see Laplace (disambiguation).
Pierre-Simon Laplace
File:Pierre-Simon, marquis de Laplace (1745-1827) - Guérin.jpg
Pierre-Simon Laplace (1749–1827). Posthumous portrait by
Jean-Baptiste Paulin Guérin, 1838.
Born 23 March 1749
Beaumont-en-Auge, Normandy, France
Died 5 March 1827(1827-03-05) (aged 77)
Paris, France
Nationality French
Fields Astronomer and Mathematician
Institutions École Militaire (1769–1776)
Alma mater University of Caen
Doctoral advisor Template:If empty
Academic advisors Jean d'Alembert
Christophe Gadbled
Pierre Le Canu
Doctoral students Siméon Denis Poisson
Known for
Signature

Pierre-Simon, marquis de Laplace (/ləˈplɑːs/; Template:IPA-fr; 23 March 1749 – 5 March 1827) was an influential French scholar whose work was important to the development of mathematics, statistics, physics, and astronomy. He summarized and extended the work of his predecessors in his five-volume Mécanique Céleste (Celestial Mechanics) (1799–1825). This work translated the geometric study of classical mechanics to one based on calculus, opening up a broader range of problems. In statistics, the Bayesian interpretation of probability was developed mainly by Laplace.[2]

Laplace formulated Laplace's equation, and pioneered the Laplace transform which appears in many branches of mathematical physics, a field that he took a leading role in forming. The Laplacian differential operator, widely used in mathematics, is also named after him. He restated and developed the nebular hypothesis of the origin of the solar system and was one of the first scientists to postulate the existence of black holes and the notion of gravitational collapse.

Laplace is remembered as one of the greatest scientists of all time. Sometimes referred to as the French Newton or Newton of France, he possessed a phenomenal natural mathematical faculty superior to that of any of his contemporaries.[3]

Laplace became a count of the First French Empire in 1806 and was named a marquis in 1817, after the Bourbon Restoration.

Early years

The original documents relating to the life of Laplace were lost when the family château of Saint-Julien de Mailloc, near Lisieux, the home of his great-great-grandson the Comte de Colbert-Laplace burned in 1925 and some had been destroyed earlier, when his house at Arcueil near Paris was looted by house breakers in 1871.[4] Laplace was born in Beaumont-en-Auge, Normandy on 23 March 1749 at Beaumont-en-Auge, a village four miles west of Pont l'Eveque in Normandy. According to W. W. Rouse Ball,[5] His father, Pierre de Laplace, owned and farmed the small estates of Maarquis. His great-uncle, Maitre Oliver de Laplace, had held the title of Chirurgien Royal. It would seem that from a pupil he became an usher in the school at Beaumont; but, having procured a letter of introduction to d'Alembert, he went to Paris to advance his fortune. However, Karl Pearson[4] is scathing about the inaccuracies in Rouse Ball's account and states:

Indeed Caen was probably in Laplace's day the most intellectually active of all the towns of Normandy. It was here that Laplace was educated and was provisionally a professor. It was here he wrote his first paper published in the Mélanges of the Royal Society of Turin, Tome iv. 1766–1769, at least two years before he went at 22 or 23 to Paris in 1771. Thus before he was 20 he was in touch with Lagrange in Turin. He did not go to Paris a raw self-taught country lad with only a peasant background! In 1765 at the age of sixteen Laplace left the "School of the Duke of Orleans" in Beaumont and went to the University of Caen, where he appears to have studied for five years. The 'École Militaire' of Beaumont did not replace the old school until 1776.

His parents were from comfortable families. His father was Pierre Laplace, and his mother was Marie-Anne Sochon. The Laplace family was involved in agriculture until at least 1750, but Pierre Laplace senior was also a cider merchant and syndic of the town of Beaumont.

Pierre Simon Laplace attended a school in the village run at a Benedictine priory, his father intending that he be ordained in the Roman Catholic Church. At sixteen, to further his father's intention, he was sent to the University of Caen to read theology.[6]

At the university, he was mentored by two enthusiastic teachers of mathematics, Christophe Gadbled and Pierre Le Canu, who awoke his zeal for the subject. Here Laplace's brilliance as a mathematician was quickly recognised and while still at Caen he wrote a memoir Sur le Calcul integral aux differences infinitment petites et aux differences finies. This provided the first intercourse between Laplace and Lagrange for Lagrange who was the senior by thirteen years , had recently founded in his native city of Turin a journal named Miscellanea Taurinensia, in which many of his other early works were printed and it was in the fourth volume of this series the Laplace's paper appeared. About this time, recognizing that he had no vocation for the priesthood, he determined to become a professional mathematician. In this connexion reference may perhaps be made to the statement, which has appeared in some notices of him, that he broke altogether with the church and became an atheist. Laplace did not graduate in theology but left for Paris with a letter of introduction from Le Canu to Jean le Rond d'Alembert which was at that time supreme scientific circles.[6][7]

According to his great-great-grandson,[4] d'Alembert received him rather poorly, and to get rid of him gave him a thick mathematics book, saying to come back when he had read it. When Laplace came back a few days later, d'Alembert was even less friendly and did not hide his opinion that it was impossible that Laplace could have read and understood the book. But upon questioning him, he realized that it was true, and from that time he took Laplace under his care.

Another version is that Laplace solved overnight a problem that d'Alembert set him for submission the following week, then solved a harder problem the following night. D'Alembert was impressed and recommended him for a teaching place in the École Militaire.[8]

With a secure income and undemanding teaching, Laplace now threw himself into original research and in the next seventeen years, 1771–1787, he produced much of his original work in astronomy.[9]

Laplace further impressed the Marquis de Condorcet, and already in 1771 Laplace felt that he was entitled to membership of the French Academy of Sciences. However, in that year, admission went to Alexandre-Théophile Vandermonde and in 1772 to Jacques Antoine Joseph Cousin. Laplace was disgruntled, and at the beginning of 1773, d'Alembert wrote to Lagrange in Berlin to ask if a position could be found for Laplace there. However, Condorcet became permanent secretary of the Académie in February and Laplace was elected associate member on 31 March, at age 24.[10]

On 15 March 1788,[11][4] at the age of thirty-nine, Laplace married Marie-Charlotte de Courty de Romanges, a pretty eighteen-and-a-half-year-old girl from a good family in Besançon.[12] The wedding was celebrated at Saint-Sulpice, Paris. The couple had a son, Charles-Émile (1789–1874), and a daughter, Sophie-Suzanne (1792–1813).[13][14]

Analysis, probability and astronomical stability

Laplace's early published work in 1771 started with differential equations and finite differences but he was already starting to think about the mathematical and philosophical concepts of probability and statistics.[15] However, before his election to the Académie in 1773, he had already drafted two papers that would establish his reputation. The first, Mémoire sur la probabilité des causes par les événements was ultimately published in 1774 while the second paper, published in 1776, further elaborated his statistical thinking and also began his systematic work on celestial mechanics and the stability of the solar system. The two disciplines would always be interlinked in his mind. "Laplace took probability as an instrument for repairing defects in knowledge."[16] Laplace's work on probability and statistics is discussed below with his mature work on the analytic theory of probabilities.

Stability of the solar system

Sir Isaac Newton had published his Philosophiae Naturalis Principia Mathematica in 1687 in which he gave a derivation of Kepler's laws, which describe the motion of the planets, from his laws of motion and his law of universal gravitation. However, though Newton had privately developed the methods of calculus, all his published work used cumbersome geometric reasoning, unsuitable to account for the more subtle higher-order effects of interactions between the planets. Newton himself had doubted the possibility of a mathematical solution to the whole, even concluding that periodic divine intervention was necessary to guarantee the stability of the solar system. Dispensing with the hypothesis of divine intervention would be a major activity of Laplace's scientific life.[17] It is now generally regarded that Laplace's methods on their own, though vital to the development of the theory, are not sufficiently precise to demonstrate the stability of the Solar System,[18] and indeed, the Solar System is understood to be chaotic, although it happens to be fairly stable.

One particular problem from observational astronomy was the apparent instability whereby Jupiter's orbit appeared to be shrinking while that of Saturn was expanding. The problem had been tackled by Leonhard Euler in 1748 and Joseph Louis Lagrange in 1763 but without success.[19] In 1776, Laplace published a memoir in which he first explored the possible influences of a purported luminiferous ether or of a law of gravitation that did not act instantaneously. He ultimately returned to an intellectual investment in Newtonian gravity.[20] Euler and Lagrange had made a practical approximation by ignoring small terms in the equations of motion. Laplace noted that though the terms themselves were small, when integrated over time they could become important. Laplace carried his analysis into the higher-order terms, up to and including the cubic. Using this more exact analysis, Laplace concluded that any two planets and the sun must be in mutual equilibrium and thereby launched his work on the stability of the solar system.[21] Gerald James Whitrow described the achievement as "the most important advance in physical astronomy since Newton".[17]

Laplace had a wide knowledge of all sciences and dominated all discussions in the Académie.[22] Laplace seems to have regarded analysis merely as a means of attacking physical problems, though the ability with which he invented the necessary analysis is almost phenomenal. As long as his results were true he took but little trouble to explain the steps by which he arrived at them; he never studied elegance or symmetry in his processes, and it was sufficient for him if he could by any means solve the particular question he was discussing.[9]

On the figure of the Earth

During the years 1784–1787 he published some memoirs of exceptional power. Prominent among these is one read in 1783, reprinted as Part II of Théorie du Mouvement et de la figure elliptique des planètes in 1784, and in the third volume of the Mécanique céleste. In this work, Laplace completely determined the attraction of a spheroid on a particle outside it. This is memorable for the introduction into analysis of spherical harmonics or Laplace's coefficients, and also for the development of the use of what we would now call the gravitational potential in celestial mechanics.

Spherical harmonics

In 1783, in a paper sent to the Académie, Adrien-Marie Legendre had introduced what are now known as associated Legendre functions.[9] If two points in a plane have polar co-ordinates (r, θ) and (r ', θ'), where r ' ≥ r, then, by elementary manipulation, the reciprocal of the distance between the points, d, can be written as:

<math>\frac{1}{d} = \frac{1}{r'} \left [ 1 - 2 \cos (\theta' - \theta) \frac{r}{r'} + \left ( \frac{r}{r'} \right ) ^2 \right ] ^{- \tfrac{1}{2}}.</math>

This expression can be expanded in powers of r/r ' using Newton's generalised binomial theorem to give:

<math>\frac{1}{d} = \frac{1}{r'} \sum_{k=0}^\infty P^0_k ( \cos ( \theta' - \theta ) ) \left ( \frac{r}{r'} \right ) ^k.</math>

The sequence of functions P0k(cosф) is the set of so-called "associated Legendre functions" and their usefulness arises from the fact that every function of the points on a circle can be expanded as a series of them.[9]

Laplace, with scant regard for credit to Legendre, made the non-trivial extension of the result to three dimensions to yield a more general set of functions, the spherical harmonics or Laplace coefficients. The latter term is not in common use now .[9]

Potential theory

This paper is also remarkable for the development of the idea of the scalar potential.[9] The gravitational force acting on a body is, in modern language, a vector, having magnitude and direction. A potential function is a scalar function that defines how the vectors will behave. A scalar function is computationally and conceptually easier to deal with than a vector function.

Alexis Clairaut had first suggested the idea in 1743 while working on a similar problem though he was using Newtonian-type geometric reasoning. Laplace described Clairaut's work as being "in the class of the most beautiful mathematical productions".[23] However, Rouse Ball alleges that the idea "was appropriated from Joseph Louis Lagrange, who had used it in his memoirs of 1773, 1777 and 1780".[9] The term "potential" itself was due to Daniel Bernoulli, who introduced it in his 1738 memoire Hydrodynamica. However, according to Rouse Ball, the term "potential function" was not actually used (to refer to a function V of the coordinates of space in Laplace's sense) until George Green's 1828 An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism.[24][25]

Laplace applied the language of calculus to the potential function and showed that it always satisfies the differential equation:[9]

<math>\nabla^2V={\partial^2V\over \partial x^2 } +

{\partial^2V\over \partial y^2 } + {\partial^2V\over \partial z^2 } = 0. </math>

An analogous result for the velocity potential of a fluid had been obtained some years previously by Leonhard Euler.[26][27]

Laplace's subsequent work on gravitational attraction was based on this result. The quantity ∇2V has been termed the concentration of V and its value at any point indicates the "excess" of the value of V there over its mean value in the neighbourhood of the point. Laplace's equation, a special case of Poisson's equation, appears ubiquitously in mathematical physics. The concept of a potential occurs in fluid dynamics, electromagnetism and other areas. Rouse Ball speculated that it might be seen as "the outward sign" of one of the a priori forms in Kant's theory of perception.[9]

The spherical harmonics turn out to be critical to practical solutions of Laplace's equation. Laplace's equation in spherical coordinates, such as are used for mapping the sky, can be simplified, using the method of separation of variables into a radial part, depending solely on distance from the centre point, and an angular or spherical part. The solution to the spherical part of the equation can be expressed as a series of Laplace's spherical harmonics, simplifying practical computation.

Planetary and lunar inequalities

Jupiter–Saturn great inequality

Laplace presented a memoir on planetary inequalities in three sections, in 1784, 1785, and 1786. This dealt mainly with the identification and explanation of the perturbations now known as the "great Jupiter–Saturn inequality". Laplace solved a longstanding problem in the study and prediction of the movements of these planets. He showed by general considerations, first, that the mutual action of two planets could never cause large changes in the eccentricities and inclinations of their orbits; but then, even more importantly, that peculiarities arose in the Jupiter–Saturn system because of the near approach to commensurability of the mean motions of Jupiter and Saturn.

In this context commensurability means that the ratio of the two planets' mean motions is very nearly equal to a ratio between a pair of small whole numbers. Two periods of Saturn's orbit around the Sun almost equal five of Jupiter's. The corresponding difference between multiples of the mean motions, (2nJ − 5nS), corresponds to a period of nearly 900 years, and it occurs as a small divisor in the integration of a very small perturbing force with this same period. As a result, the integrated perturbations with this period are disproportionately large, about 0.8° degrees of arc in orbital longitude for Saturn and about 0.3° for Jupiter.

Further developments of these theorems on planetary motion were given in his two memoirs of 1788 and 1789, but with the aid of Laplace's discoveries, the tables of the motions of Jupiter and Saturn could at last be made much more accurate. It was on the basis of Laplace's theory that Delambre computed his astronomical tables.[9]

Celestial mechanics