Adverts

Open Access Articles- Top Results for Propionic acid

Propionic acid

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. colspan=2 class="borderless" border=0 align=center #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.
Propanoic acid

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.- #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. colspan=2 class="borderless" border=0 align=center #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Names

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

IUPAC name
Propanoic acid
Other names
Ethanecarboxylic acid
colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Identifiers#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-



79-09-4 7pxY ChEBI CHEBI:30768 7pxY ChEMBL ChEMBL14021 7pxY ChemSpider 1005 7pxY DrugBank DB03766 7pxY Jmol-3D images Image
Image PubChem Template:Chembox PubChem/format RTECS number UE5950000 colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Properties

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

C3H6O2 Molar mass Lua error in Module:Math at line 495: attempt to index field 'ParserFunctions' (a nil value). g·mol−1 Appearance Colorless, oily liquid[1] Odor Pungent, rancid, unpleasant[1] Density 0.98797 g/cm3[2] Melting point Script error: No such module "convert". [8] Boiling point Script error: No such module "convert". [8] Sublimes at −48 °C
ΔsublHo = 74 kJ/mol[3] 8.19 g/g (−28.3 °C)
34.97 g/g (−23.9 °C)
Miscible (≥ −19.3 °C)[4] Solubility Miscible in EtOH, ether, CHCl3[5] log P 0.33[6] Vapor pressure 0.32 kPa (20 °C)[7]
0.47 kPa (25 °C)[6]
9.62 kPa (100 °C)[3] 4.45·10−4 L·atm/mol[6] Acidity (pKa) 4.88[6] Thermal conductivity 1.44·105 W/m·K 1.3843[2] Viscosity 1.175 cP (15 °C)[2]
1.02 cP (25 °C)
0.668 cP (60 °C)
0.495 cP (90 °C)[6] colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Structure

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

Crystal structure Monoclinic (−95 °C)[9] Space group P21/c[9] Lattice constant a = 4.04 Å, b = 9.06 Å, c = 11 Å[9] Lattice constant α = 90°, β = 91.25°, γ = 90° Dipole moment 0.63 D (22 °C)[2] colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Thermochemistry

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

152.8 J/mol·K[5][3] 191 J/mol·K[3] −510.8 kJ/mol[3] 1527.3 kJ/mol[2][3] colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Hazards

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.- #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. SDS #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. External SDS #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

Main hazards Corrosive GHS pictograms The flame pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)The corrosion pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)[7] GHS signal word Danger H314[7] P280, P305+351+338, P310[7] EU classification Corrosive C R-phrases R10, R34 S-phrases (S1/2), S23, S36, S45 NFPA 704

Error: Must specify an image in the first line.

2
3
0
Flash point Script error: No such module "convert". [7] Script error: No such module "convert". 1370 mg/kg (white mice, oral)[5] US health exposure limits (NIOSH):

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. style="padding-left:0.5em;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. none[1] #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. style="padding-left:0.5em;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. TWA 10 ppm (30 mg/m3) ST 15 ppm (45 mg/m3)[1] #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. style="padding-left:0.5em;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. N.D.[1] #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Related compounds

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

Other anions
Propanoate Acetic acid
Lactic acid
3-hydroxypropionic acid
Tartronic acid
Acrylic acid
Butyric acid
Related compounds
1-Propanol
Propionaldehyde
Sodium propionate
Propionic anhydride colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Supplementary data page#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.- #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Refractive index (n),
Dielectric constantr), etc. #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.
Thermodynamic
data

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Phase behaviour
solid–liquid–gas #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. UV, IR, NMR, MS #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 14pxY verify (what is10pxY/10pxN?) Infobox references

Propionic acid (from the Greek words protos, meaning first, and pion, meaning fat; also known as propanoic acid) is a naturally occurring carboxylic acid with chemical formula CH3CH2COOH. It is a clear liquid with a pungent and unpleasant smell somewhat resembling body odor. The anion CH3CH2COO as well as the salts and esters of propionic acid are known as propionates (or propanoates).

History

Propionic acid was first described in 1844 by Johann Gottlieb, who found it among the degradation products of sugar. Over the next few years, other chemists produced propionic acid in various other ways, none of them realizing they were producing the same substance. In 1847, the French chemist Jean-Baptiste Dumas established all the acids to be the same compound, which he called propionic acid, from the Greek words protos, meaning first, and pion, meaning fat, because it is the smallest H(CH2)nCOOH acid that exhibits the properties of the other fatty acids, such as producing an oily layer when salted out of water and having a soapy potassium salt.

Properties

Propionic acid has physical properties intermediate between those of the smaller carboxylic acids, formic and acetic acids, and the larger fatty acids. It is miscible with water, but can be removed from water by adding salt. As with acetic and formic acids, it consists of hydrogen bonded pairs of molecules as both the liquid and the vapor.

Propionic acid displays the general properties of carboxylic acids: It can form amide, ester, anhydride, and chloride derivatives. It can undergo alpha-halogenation with bromine in the presence of PBr3 as catalyst (the HVZ reaction) to form CH3CHBrCOOH.[10]

Production

In industry, propionic acid is mainly produced by the hydrocarboxylation of ethylene using nickel carbonyl as the catalyst:[11]

H2C=CH2 + H2O + CO → CH3CH2CO2H

It is also produced by the aerobic oxidation of propionaldehyde. In the presence of cobalt or manganese ions, this reaction proceeds rapidly at temperatures as mild as 40–50 °C:

CH3CH2CHO + ½ O2 → CH3CH2COOH.

Large amounts of propionic acid were once produced as a byproduct of acetic acid manufacture. At the current time, the world's largest producer of propionic acid is BASF, with approximately 150 kt/a production capacity.

Propionic acid is produced biologically as its coenzyme A ester, propionyl-CoA, from the metabolic breakdown of fatty acids containing odd numbers of carbon atoms, and also from the breakdown of some amino acids. Bacteria of the genus Propionibacterium produce propionic acid as the end-product of their anaerobic metabolism. This class of bacteria is commonly found in the stomachs of ruminants and the sweat glands of humans, and their activity is partially responsible for the odor of both Swiss cheese and sweat.

It is also biosynthesized in the large intestine of humans by bacterial fermentation of dietary fibre.[12]

Industrial uses

Propionic acid inhibits the growth of mold and some bacteria at the levels between 0.1 and 1% by weight. As a result, most propionic acid produced is consumed as a preservative for both animal feed and food for human consumption. For animal feed, it is used either directly or as its ammonium salt. The antibiotic Monensin is added to cattle feed to favor propionibacteria over acetic acid producers in the rumen; this produces less carbon dioxide and feed conversion is better. This application accounts for about half of the world production of propionic acid. Another major application is as a preservative in baked goods, which use the sodium and calcium salts.[11] As a food additive, it is approved for use in the EU,[13] USA[14] and Australia and New Zealand.[15] It is listed by its INS number (280) or E number E280.

Propionic acid is also useful as an intermediate in the production of other chemicals, especially polymers. Cellulose-acetate-propionate is a useful thermoplastic. Vinyl propionate is also used. In more specialized applications, it is also used to make pesticides and pharmaceuticals. The esters of propionic acid have fruit-like odors and are sometimes used as solvents or artificial flavorings.[11]

Biological uses

The metabolism of propionic acid begins with its conversion to propionyl coenzyme A (propionyl-CoA), the usual first step in the metabolism of carboxylic acids. Since propionic acid has three carbons, propionyl-CoA cannot directly enter either beta oxidation or the citric acid cycles. In most vertebrates, propionyl-CoA is carboxylated to D-methylmalonyl-CoA, which is isomerised to L-methylmalonyl-CoA. A vitamin B12-dependent enzyme catalyzes rearrangement of L-methylmalonyl-CoA to succinyl-CoA, which is an intermediate of the citric acid cycle and can be readily incorporated there.

In propionic acidemia, a rare inherited genetic disorder, propionate acts as a metabolic toxin in liver cells by accumulating in mitochondria as propionyl-CoA and its derivative, methylcitrate, two tricarboxylic acid cycle inhibitors. Propanoate is metabolized oxidatively by glia, which suggests astrocytic vulnerability in propionic acidemia when intramitochondrial propionyl-CoA may accumulate. Propionic acidemia may alter both neuronal and glial gene expression by affecting histone acetylation.[16][17] When propionic acid is infused directly into rodents' brains, it produces reversible behavior (e.g., hyperactivity, dystonia, social impairment, perseveration) and brain changes (e.g., innate neuroinflammation, glutathione depletion) that may be used as a means to model autism in rats.[16]

It also, being a three-carbon molecule, feeds into hepatic gluconeogenesis (that is, the creation of glucose molecules from simpler molecules in the liver).[18]

Human occurrence

The human skin is host of several species of bacteria known as Propionibacteria, which are named after their ability to produce propionic acid. The most notable one is the Propionibacterium acnes, which lives mainly in the sebaceous glands of the skin and is one of the principal causes of acne.

References

  1. ^ a b c d e "NIOSH Pocket Guide to Chemical Hazards #0529". National Institute for Occupational Safety and Health (NIOSH). 
  2. ^ a b c d e Lagowski, J.J., ed. (2012). The Chemistry of Nonaqueous Solvents III. Elsevier. p. 362. ISBN 0323151035. 
  3. ^ a b c d e f Propanoic acid in Linstrom, P.J.; Mallard, W.G. (eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD. http://webbook.nist.gov (retrieved 2014-06-13)
  4. ^ Seidell, Atherton; Linke, William F. (1919). Solubilities of Inorganic and Organic Compounds (2nd ed.). D. Van Nostrand Company. p. 569. 
  5. ^ a b c http://chemister.ru/Database/properties-en.php?dbid=1&id=1485
  6. ^ a b c d e CID 1032 from PubChem
  7. ^ a b c d e Sigma-Aldrich Co., Propionic acid. Retrieved on 2014-06-13.
  8. ^ a b Lide, David R., ed. (2009). CRC Handbook of Chemistry and Physics (90th ed.). Boca Raton, Florida: CRC Press. ISBN 978-1-4200-9084-0. 
  9. ^ a b c Strieter, F. J.; Templeton, D. H.; Scheuerman, R. F.; Sass, R. L. (1962). "The crystal structure of propionic acid". Acta Crystallographica 15 (12): 1233. doi:10.1107/S0365110X62003278.  edit
  10. ^ C. S. Marvel; V. du Vigneaud (1931). "α-bromo-Isovaleric acid". Org. Synth. 11: 20. ; Coll. Vol. 2, p. 93 
  11. ^ a b c W. Bertleff; M. Roeper; X. Sava (2005), "Carbonylation", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, doi:10.1002/14356007.a05_217 
  12. ^ den Besten, G; van Eunen, K; Groen, AK; Venema, K; Reijngoud, DJ; Bakker, BM (September 2013). "The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism.". Journal of Lipid Research 54 (9): 2325–40. PMID 23821742. doi:10.1194/jlr.R036012. 
  13. ^ "Current EU approved additives and their E Numbers". UK Food Standards Agency. Retrieved 2011-10-27. 
  14. ^ "Listing of Food Additives Status Part II". US Food and Drug Administration. Retrieved 2011-10-27. 
  15. ^ "Standard 1.2.4 - Labelling of ingredients". Australia New Zealand Food Standards Code. Comlaw.au. Retrieved 2011-10-27. 
  16. ^ a b D. F. MacFabe; D. P. Cain; K. Rodriguez-Capote; A. E. Franklin; J. E. Hoffman; F. Boon; A. R. Taylor; M. Kavaliers; K.-P. Ossenkopp (2007). "Neurobiological effects of intraventricular propionic acid in rats: Possible role of short-chain fatty acids on the pathogenesis and characteristics of autism spectrum disorders". Behavioral Brain Research 176 (1): 149–169. doi:10.1016/j.bbr.2006.07.025. 
  17. ^ N. H. T. Nguyen; C. Morland; S. Villa Gonzalez; F. Rise; J. Storm-Mathisen; V. Gundersen; B. Hassel (2007). "Propionate increases neuronal histone acetylation, but is metabolized oxidatively by glia. Relevance for propionic acidemia". Journal of Neurochemistry 101 (3): 806–814. PMID 17286595. doi:10.1111/j.1471-4159.2006.04397.x. 
  18. ^ Aschenbach, JR; Kristensen, NB; Donkin, SS; Hammon, HM; Penner, GB (December 2010). "Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough.". IUBMB Life 62 (12): 869–77. PMID 21171012. doi:10.1002/iub.400. 

External links

Lua error in Module:Authority_control at line 346: attempt to index field 'wikibase' (a nil value).