Adverts

Pyrene

For other uses, see Pyrene (disambiguation).
Pyrene
Structural formula of pyrene
Ball-and-stick model of the pyrene molecule
colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Names

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

IUPAC name
pyrene
Other names
benzo[def]phenanthrene
colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Identifiers#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-



129-00-0 7pxY
ChEBI CHEBI:39106 7pxY
ChEMBL ChEMBL279564 7pxY
ChemSpider 29153 7pxY
Jmol-3D images Image
KEGG C14335 7pxY
PubChem Template:Chembox PubChem/format
RTECS number UR2450000
colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Properties

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

C16H10
Molar mass 202.25 g/mol
Appearance colorless solid

(yellow impurities are often found at trace levels in many samples).

Density 1.271 g/ml
Melting point Script error: No such module "convert".
Boiling point Script error: No such module "convert".
0.135 mg/l
colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Hazards

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-

Main hazards irritant
R-phrases 36/37/38-45-53
S-phrases 24/25-26-36
NFPA 704

Error: Must specify an image in the first line.

1
2
0
Flash point non-flammable
colspan=2 style="background:#f8eaba; border-top:2px solid transparent; border-bottom:2px solid transparent; text-align:center;" #REDIRECTmw:Help:Magic words#Other
This page is a soft redirect. Related compounds

#REDIRECTmw:Help:Magic words#Other
This page is a soft redirect.-


Related PAHs
benzopyrene
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
 14pxY verify (what is10pxY/10pxN?)
Infobox references
File:Pyrene numbered.png
Diagram showing the numbering and ring fusion locations of pyrene according to IUPAC nomenclature of organic chemistry.

Pyrene is a polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings, resulting in a flat aromatic system. The chemical formula is Template:Chem/atomTemplate:Chem/atomTemplate:Chem/atomTemplate:Chem/atom. This colorless solid is the smallest peri-fused PAH (one where the rings are fused through more than one face). Pyrene forms during incomplete combustion of organic compounds.

Occurrence and reactivity

Pyrene was first isolated from coal tar, where it occurs up to 2% by weight. As a peri-fused PAH, pyrene is much more resonance-stabilized than its five-member-ring containing isomer fluoranthene. Therefore, it is produced in a wide range of combustion conditions. For example, automobiles produce about 1 μg/km.[1] More than 20% of the carbon in the universe may be associated with PAHs, including pyrene.[2]

Oxidation with chromate affords perinaphthenone and then naphthalene-1,4,5,8-tetracarboxylic acid. It undergoes a series of hydrogenation reactions, and it is susceptible to halogenation, Diels-Alder additions, and nitration, all with varying degrees of selectivity.[1] Bromination occurs at one of the 3-positions.[3]

Applications

Pyrene and its derivatives are used commercially to make dyes and dye precursors, for example pyranine and naphthalene-1,4,5,8-tetracarboxylic acid. Its derivatives are also valuable molecular probes via fluorescence spectroscopy, having a high quantum yield and lifetime (0.65 and 410 nanoseconds, respectively, in ethanol at 293 K). Its fluorescence emission spectrum is very sensitive to solvent polarity, so pyrene has been used as a probe to determine solvent environments. This is due to its excited state having a different, non-planar structure than the ground state. Certain emission bands are unaffected, but others vary in intensity due to the strength of interaction with a solvent.

Safety

Although it is not as problematic as benzopyrene, animal studies have shown pyrene is toxic to the kidneys and the liver.

See also

References

  1. ^ a b Selim Senkan and Marco Castaldi "Combustion" in Ullmann's Encyclopedia of Industrial Chemistry, 2003 Wiley-VCH, Weinheim. Article Online Posting Date: March 15, 2003.
  2. ^ Hoover, Rachel (February 21, 2014). "Need to Track Organic Nano-Particles Across the Universe? NASA's Got an App for That". NASA. Retrieved February 22, 2014. 
  3. ^ W. H. Gumprecht "3-Bromopyrene" Org. Synth. 1968, vol. 48, p. 30.

Additional reading

  • Birks, J. B. (1969). Photophysics of Aromatic Molecules. London: Wiley. 
  • Valeur, B. (2002). Molecular Fluorescence: Principles and Applications. New York: Wiley-VCH. 
  • Birks, J.B. (1975). Eximers. london: Reports on Progress in Physics. 
  • Fetzer, J. C. (2000). The Chemistry and Analysis of the Large Polycyclic Aromatic Hydrocarbons. New York: Wiley. 

External links

Lua error in Module:Authority_control at line 346: attempt to index field 'wikibase' (a nil value).