Adverts

Open Access Articles- Top Results for RYR1

RYR1

Template:Infobox3cols/rowTemplate:Infobox3cols/rowTemplate:Infobox3cols/rowTemplate:Infobox3cols/rowTemplate:Infobox3cols/row
Identifiers
SymbolsRYR1 ; CCO; MHS; MHS1; PPP1R137; RYDR; RYR; RYR-1; SKRR
External IDsOMIM180901 MGI99659 HomoloGene68069 IUPHAR: 747 ChEMBL: 1846 GeneCards: RYR1 Gene
RNA expression pattern
File:PBB GE RYR1 205485 at tn.png
More reference expression data
Orthologs
SpeciesHumanMouse
Entrez626120190
EnsemblENSG00000196218ENSMUSG00000030592
UniProtP21817E9PZQ0
RefSeq (mRNA)NM_000540NM_009109
RefSeq (protein)NP_000531NP_033135
Location (UCSC)Chr 19:
38.92 – 39.08 Mb
Chr 7:
29 – 29.13 Mb
PubMed search[1][2]

Ryanodine receptor 1 (RYR-1) also known as skeletal muscle calcium release channel or skeletal muscle-type ryanodine receptor is a protein found primarily in skeletal muscle. In humans, it is encoded by the RYR1 gene.[1][2]

Function

RYR1 functions as a calcium release channel in the sarcoplasmic reticulum, as well as a connection between the sarcoplasmic reticulum and the transverse tubule.[3]

Clinical significance

Mutations in the RYR1 gene are associated with malignant hyperthermia susceptibility, central core disease, minicore myopathy with external ophthalmoplegia and samaritan myopathy, a benign congenital myopathy.[4] Alternatively spliced transcripts encoding different isoforms have been demonstrated.[3] Dantrolene may be the only known drug that is effective during cases of malignant hyperthermia.[citation needed]

Interactions

RYR1 has been shown to interact with:

See also

References

  1. ^ Fujii J, Otsu K, Zorzato F, de Leon S, Khanna VK, Weiler JE, O'Brien PJ, MacLennan DH (August 1991). "Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia". Science 253 (5018): 448–51. PMID 1862346. doi:10.1126/science.1862346. 
  2. ^ Wu S, Ibarra MC, Malicdan MC, Murayama K, Ichihara Y, Kikuchi H, Nonaka I, Noguchi S, Hayashi YK, Nishino I (June 2006). "Central core disease is due to RYR1 mutations in more than 90% of patients". Brain 129 (Pt 6): 1470–80. PMID 16621918. doi:10.1093/brain/awl077. 
  3. ^ a b "Entrez Gene: RYR1 ryanodine receptor 1 (skeletal)". 
  4. ^ Böhm, J; Leshinsky-Silver, E; Vassilopoulos, S; Le Gras, S; Lerman-Sagie, T; Ginzberg, M; Jost, B; Lev, D; Laporte, J (Jul 3, 2012). "Samaritan myopathy, an ultimately benign congenital myopathy, is caused by a RYR1 mutation.". Acta Neuropathologica 124 (4): 575–81. PMID 22752422. doi:10.1007/s00401-012-1007-3. 
  5. ^ Fruen BR, Balog EM, Schafer J, Nitu FR, Thomas DD, Cornea RL (January 2005). "Direct detection of calmodulin tuning by ryanodine receptor channel targets using a Ca2+-sensitive acrylodan-labeled calmodulin". Biochemistry 44 (1): 278–84. PMID 15628869. doi:10.1021/bi048246u. 
  6. ^ Cornea RL, Nitu F, Gruber S, Kohler K, Satzer M, Thomas DD, Fruen BR (April 2009). "FRET-based mapping of calmodulin bound to the RyR1 Ca2+ release channel". Proc. Natl. Acad. Sci. U.S.A. 106 (15): 6128–33. PMC 2662960. PMID 19332786. doi:10.1073/pnas.0813010106. 
  7. ^ Avila, Guillermo; Lee Eun Hui; Perez Claudio F; Allen P D; Dirksen Robert T (June 2003). "FKBP12 binding to RyR1 modulates excitation-contraction coupling in mouse skeletal myotubes". J. Biol. Chem. (United States) 278 (25): 22600–8. ISSN 0021-9258. PMID 12704193. doi:10.1074/jbc.M205866200. 
  8. ^ Bultynck, G; De Smet P; Rossi D; Callewaert G; Missiaen L; Sorrentino V; De Smedt H; Parys J B (March 2001). "Characterization and mapping of the 12 kDa FK506-binding protein (FKBP12)-binding site on different isoforms of the ryanodine receptor and of the inositol 1,4,5-trisphosphate receptor". Biochem. J. (England) 354 (Pt 2): 413–22. ISSN 0264-6021. PMC 1221670. PMID 11171121. doi:10.1042/0264-6021:3540413. 
  9. ^ Gaburjakova, M; Gaburjakova J; Reiken S; Huang F; Marx S O; Rosemblit N; Marks A R (May 2001). "FKBP12 binding modulates ryanodine receptor channel gating". J. Biol. Chem. (United States) 276 (20): 16931–5. ISSN 0021-9258. PMID 11279144. doi:10.1074/jbc.M100856200. 
  10. ^ Hwang SY, Wei J, Westhoff JH, Duncan RS, Ozawa F, Volpe P, Inokuchi K, Koulen P (August 2003). "Differential functional interaction of two Vesl/Homer protein isoforms with ryanodine receptor type 1: a novel mechanism for control of intracellular calcium signaling". Cell Calcium 34 (2): 177–84. PMID 12810060. doi:10.1016/S0143-4160(03)00082-4. 
  11. ^ a b c Feng W, Tu J, Yang T, Vernon PS, Allen PD, Worley PF, Pessah IN (November 2002). "Homer regulates gain of ryanodine receptor type 1 channel complex". J. Biol. Chem. 277 (47): 44722–30. PMID 12223488. doi:10.1074/jbc.M207675200. 
  12. ^ Lee JM, Rho SH, Shin DW, Cho C, Park WJ, Eom SH, Ma J, Kim DH (February 2004). "Negatively charged amino acids within the intraluminal loop of ryanodine receptor are involved in the interaction with triadin". J. Biol. Chem. 279 (8): 6994–7000. PMID 14638677. doi:10.1074/jbc.M312446200. 
  13. ^ Caswell AH, Motoike HK, Fan H, Brandt NR (January 1999). "Location of ryanodine receptor binding site on skeletal muscle triadin". Biochemistry 38 (1): 90–7. PMID 9890886. doi:10.1021/bi981306. 
  14. ^ Guo W, Campbell KP (April 1995). "Association of triadin with the ryanodine receptor and calsequestrin in the lumen of the sarcoplasmic reticulum". J. Biol. Chem. 270 (16): 9027–30. PMID 7721813. doi:10.1074/jbc.270.16.9027. 
  15. ^ Groh S, Marty I, Ottolia M, Prestipino G, Chapel A, Villaz M, Ronjat M (April 1999). "Functional interaction of the cytoplasmic domain of triadin with the skeletal ryanodine receptor". J. Biol. Chem. 274 (18): 12278–83. PMID 10212196. doi:10.1074/jbc.274.18.12278. 

Further reading

  • Treves S, Anderson AA, Ducreux S et al. (2005). "Ryanodine receptor 1 mutations, dysregulation of calcium homeostasis and neuromuscular disorders.". Neuromuscul. Disord. 15 (9-10): 577–87. PMID 16084090. doi:10.1016/j.nmd.2005.06.008. 
</dl>

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.Template:Gene-19-stub