Open Access Articles- Top Results for Run-of-the-river hydroelectricity

Run-of-the-river hydroelectricity

File:Chief Joseph Dam.jpg
Chief Joseph Dam near Bridgeport, Washington, USA, is a major run-of-the-river station without a sizeable reservoir.

Run-of-the-river hydroelectricity (ROR) is a type of hydroelectric generation plant whereby little or no water storage is provided. Run-of-the-river power plants may have no water storage at all or a limited amount of storage, in which case the storage reservoir is referred to as pondage. A plant without pondage has no water storage and is, therefore, subject to seasonal river flows. Thus, the plant will operate as an intermittent energy source while a plant with pondage can regulate the water flow at all times and can serve as a peaking power plant or base load power plant.


Run-of-the-river or ROR hydroelectricity is considered ideal for streams or rivers with a minimum dry weather flow or those regulated by a much larger dam or reservoir upstream.[1][2] A dam, smaller than that used for traditional hydro, is required to ensure that there is enough water to enter the penstock pipes that lead to the turbines which are at a lower elevation.[3] Projects with pondage, as opposed to those without pondage, can store water for peak load demand or continuously for base load, especially during wet seasons.[1] In general, projects divert some or most of a river’s flow (up to 95% of mean annual discharge)[4] through a pipe and/or tunnel leading to electricity-generating turbines, then return the water back to the river downstream.[3]

ROR projects are dramatically different in design and appearance from conventional hydroelectric projects. Traditional hydro dams store enormous quantities of water in reservoirs, necessitating the flooding of large tracts of land. In contrast, most run-of-river projects do not require a large impoundment of water, which is why they are often referred to as environmentally friendly, or "green power".[5]

The use of the term "run-of-the-river" for power projects varies around the world. Some may consider a project ROR if power is produced with no water storage while limited storage is considered ROR by others. Developers may mislabel a project ROR to soothe public perception about its environmental or social effects. The Bureau of Indian Standards describes run-of-the-river hydroelectricity as:[6]

A power station utilizing the run of the river flows for generation of power with sufficient pondage for supplying water for meeting diurnal or weekly fluctuations of demand. In such stations, the normal course of the river is not materially altered.[6]

Many of the larger ROR projects have been designed to a scale and generating capacity rivaling some traditional hydro dams.[7] For example, one ROR project currently proposed in British Columbia (BC) Canada has been designed to generate 1027 megawatts capacity.[8]


When developed with care to footprint size and location, ROR hydro projects can create sustainable energy minimizing impacts to the surrounding environment and nearby communities.[3] Advantages include:

Cleaner power, fewer greenhouse gases

Like all hydro-electric power, run-of-the-river hydro harnesses the natural potential energy of water, eliminating the need to burn coal or natural gas to generate the electricity needed by consumers and industry.

Less flooding/reservoirs

Substantial flooding of the upper part of the river is not required for run-of-river projects as a large reservoir is not required. As a result, people living at or near the river don't need to be relocated and natural habitats and productive farmlands are not wiped out.


"Unfirm" power

Run-of-the-River power is considered an “unfirm” source of power: a run-of-the-river project has little or no capacity for energy storage[9] and hence can't co-ordinate the output of electricity generation to match consumer demand. It thus generates much more power during times when seasonal river flows are high (i.e., spring freshet),[8] and depending on location, much less during drier summer months or frozen winter months.

Availability of sites

The potential power at a site is a result of the head and flow of water. By damming a river, the head is available to generate power at the face of the dam. Where a dam may create a reservoir hundreds of kilometers long, in run of the river the head is usually delivered by a canal, pipe or tunnel constructed upstream of the power house. Due to the cost of upstream construction, a steep drop in the river is desirable.

Environmental impacts

Small, well-sited ROR projects can be developed with minimal environmental impacts.[3] Larger projects have more environmental concerns. For example, Plutonic Power Corp.’s canceled Bute Inlet Hydroelectric Project in BC would have seen three clusters of run-of-river projects with 17 river diversions;[7] as proposed, this run-of-river project would divert over 90 kilometres of streams and rivers into tunnels and pipelines, requiring 443 km of new transmission line, 267 km of permanent roads, and 142 bridges to be built in wilderness areas.[10]

British Columbia’s mountainous terrain and wealth of big rivers have made it a global testing ground for run-of-river technology. As of March 2010, there were 628 applications pending for new water licences solely for the purposes of power generation – representing more than 750 potential points of river diversion.[11]


Many of the impacts of this technology are still not understood or well-considered, including the following:

  • Diverting large amounts of river water reduces river flows, affecting water velocity and depth, minimizing habitat quality for fish and aquatic organisms; reduced flows can lead to excessively warm water for salmon and other fish in summer.[3] As planned, the Bute Inlet project in BC could divert 95 percent of the mean annual flow in at least three of the rivers.[4]
  • New access roads and transmission lines can cause extensive habitat fragmentation for many species, making inevitable the introduction of invasive species and increases in undesirable human activities, like illegal hunting.[3]
  • Cumulative impacts—the sum of impacts caused not only by the project, but by roads, transmission lines and all other nearby developments—are difficult to measure.[3] Cumulative impacts are an especially important consideration in areas where projects are clustered in high densities close to sources of electricity demand: for example, of the 628 pending water license applications for hydropower development in British Columbia, roughly one third are located in the southwestern quarter of the province,[11] where human population density and associated environmental impacts are highest.
  • Water licenses issued by the BC Ministry of Environment, enabling developers to legally divert rivers,[12] have not included clauses that specify changing water entitlements in response to altered conditions; this fact means that conflicts will arise over the water needed to sustain aquatic life and generate power when river flow becomes more variable or decreases in the future.[11] However, it should also be noted that under section 101 of the BC Water Act, regulations regarding a water licenses can be changed by the government at any time, including the amount of water that a power plant is required to release to protect aquatic life.[13]

Major examples

See also


  1. ^ a b Dwivedi, A.K. Raja, Amit Prakash Srivastava, Manish (2006). Power Plant Engineering. New Delhi: New Age International. p. 354. ISBN 81-224-1831-7. 
  2. ^ Raghunath, H.M. (2009). Hydrology : principles, analysis, and design (Rev. 2nd ed. ed.). New Delhi: New Age International. p. 288. ISBN 81-224-1825-2. 
  3. ^ a b c d e f g Douglas T, Broomhall P, Orr C. (2007). Run-of-the-River Hydropower in BC: A Citizen’s Guide to Understanding Approvals, Impacts and Sustainability of Independent Power Projects. Watershed Watch.
  4. ^ a b Knight Piesold Consulting. Plutonic Hydro Inc. Bute Inlet Project. Summary of Project Intake and Turbine Parameters. Knight Piesold Consulting.
  5. ^ Hydromax Energy Limited. Hydromax Energy Limited website.
  6. ^ a b Partha J. Das1, Neeraj Vagholikar. "Damming Northeast India" (PDF). Kalpavriksh, Aaranyak and ActionAid India. pp. 4–5. Retrieved 11 July 2011. 
  7. ^ a b Plutonic Power (2008). Revised Project Description for Bute Inlet Hydroelectric Project Requirements. P1. Plutonic Power.
  8. ^ a b Wilderness Committee. Wilderness Committee Comments on the Draft Terms of Reference, Bute Inlet Hydroelectric Private Power Project. Letter to Kathy Eichenberger, Project Assistant Director. P1. Wilderness Committee.
  9. ^ Douglas, T. (2007). “Green” Hydro Power: Understanding Impacts, Approvals, and Sustainability of Run-of River Independent Power Projects in British Columbia. Watershed Watch.
  10. ^ "The Bute Inlet Hydroelectric Project, Backgrounder" (PDF). Watershed Watch Salmon Society. Watershed Watch. 2009. p. 2. Retrieved 2010-08-03. 
  11. ^ a b c website.
  12. ^ "The Bute Inlet Hydroelectric Project, Backgrounder" (PDF). Watershed Watch Salmon Society. Watershed Watch. 2009. p. 4. Retrieved 2010-08-03. 
  13. ^ "BC Water Act". Legislation. Retrieved May 20, 2011. 
  14. ^ Hydro-Québec Production (2012), Hydroelectric Generating Stations (as of December 31, 2010), Hydro-Québec, retrieved 2011-05-17 


  • Freedman, B., 2007, Environmental Science: a Canadian Perspective; 4th edition, Pearson Education Canada, Toronto, pp 226,394.