Open Access Articles- Top Results for SLC25A21


SymbolsSLC25A21 ; ODC; ODC1
External IDsOMIM607571 HomoloGene6988 IUPHAR: 1057 GeneCards: SLC25A21 Gene
RefSeq (mRNA)NM_001171170NM_001167976
RefSeq (protein)NP_001164641NP_001161448
Location (UCSC)Chr 14:
37.15 – 37.64 Mb
Chr 12:
56.71 – 57.2 Mb
PubMed search[1][2]

Mitochondrial 2-oxodicarboxylate carrier also known as solute carrier family 25 member 21 (SLC25A21) is a protein that in humans is encoded by the SLC25A21 gene.[1]

It is a homolog of the S. cerevisiae ODC proteins, mitochondrial carriers that transport C5-C7 oxodicarboxylates across inner mitochondrial membranes. One of the species transported by ODC is 2-oxoadipate, a common intermediate in the catabolism of lysine, tryptophan, and hydroxylysine in mammals. Within mitochondria, 2-oxoadipate is converted into acetyl-CoA.[1]

Model organisms

Model organisms have been used in the study of SLC25A21 function. A conditional knockout mouse line, called Slc25a21tm1a(KOMP)Wtsi[11][12] was generated as part of the International Knockout Mouse Consortium program — a high-throughput mutagenesis project to generate and distribute animal models of disease to interested scientists.[13][14][15]

Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion.[9][16] Twenty one tests were carried out on homozygous mutant mice and ten significant abnormalities were observed, including sub-viability at weaning, decreased body weight, absent pinna reflex, abnormal snout, skull, spine and tooth morphology, atypical indirect calorimetry, body composition and plasma chemistry data, increased mean platelet volume and moderate elevations in auditory thresholds. [9]


  1. ^ a b "Solute carrier family 25 (mitochondrial oxodicarboxylate carrier), member 21". Retrieved 2011-12-04. 
  2. ^ "Body weight data for Slc25a21". Wellcome Trust Sanger Institute. 
  3. ^ "Dysmorphology data for Slc25a21". Wellcome Trust Sanger Institute. 
  4. ^ "Indirect calorimetry data for Slc25a21". Wellcome Trust Sanger Institute. 
  5. ^ "DEXA data for Slc25a21". Wellcome Trust Sanger Institute. 
  6. ^ "Radiography data for Slc25a21". Wellcome Trust Sanger Institute. 
  7. ^ "Clinical chemistry data for Slc25a21". Wellcome Trust Sanger Institute. 
  8. ^ "Haematology data for Slc25a21". Wellcome Trust Sanger Institute. 
  9. ^ a b c Gerdin AK (2010). "The Sanger Mouse Genetics Programme: High throughput characterisation of knockout mice". Acta Ophthalmologica 88: 925–7. doi:10.1111/j.1755-3768.2010.4142.x. 
  10. ^ Mouse Resources Portal, Wellcome Trust Sanger Institute.
  11. ^ "International Knockout Mouse Consortium". 
  12. ^ "Mouse Genome Informatics". 
  13. ^ Skarnes, W. C.; Rosen, B.; West, A. P.; Koutsourakis, M.; Bushell, W.; Iyer, V.; Mujica, A. O.; Thomas, M.; Harrow, J.; Cox, T.; Jackson, D.; Severin, J.; Biggs, P.; Fu, J.; Nefedov, M.; De Jong, P. J.; Stewart, A. F.; Bradley, A. (2011). "A conditional knockout resource for the genome-wide study of mouse gene function". Nature 474 (7351): 337–342. PMC 3572410. PMID 21677750. doi:10.1038/nature10163.  edit
  14. ^ Dolgin E (2011). "Mouse library set to be knockout". Nature 474 (7351): 262–3. PMID 21677718. doi:10.1038/474262a. 
  15. ^ Collins FS, Rossant J, Wurst W (2007). "A Mouse for All Reasons". Cell 128 (1): 9–13. PMID 17218247. doi:10.1016/j.cell.2006.12.018. 
  16. ^ van der Weyden L, White JK, Adams DJ, Logan DW (2011). "The mouse genetics toolkit: revealing function and mechanism.". Genome Biol 12 (6): 224. PMC 3218837. PMID 21722353. doi:10.1186/gb-2011-12-6-224. 

Further reading

  • Fiermonte, G.; Dolce, V.; Palmieri, L.; Ventura, M.; Runswick, M. J.; Palmieri, F.; Walker, J. E. (2000). "Identification of the Human Mitochondrial Oxodicarboxylate Carrier. BACTERIAL EXPRESSION, RECONSTITUTION, FUNCTIONAL CHARACTERIZATION, TISSUE DISTRIBUTION, AND CHROMOSOMAL LOCATION". Journal of Biological Chemistry 276 (11): 8225–8230. PMID 11083877. doi:10.1074/jbc.M009607200.  edit
  • Trynka, G.; Zhernakova, A.; Romanos, J.; Franke, L.; Hunt, K. A.; Turner, G.; Bruinenberg, M.; Heap, G. A.; Platteel, M.; Ryan, A. W.; De Kovel, C.; Holmes, G. K. T.; Howdle, P. D.; Walters, J. R. F.; Sanders, D. S.; Mulder, C. J. J.; Mearin, M. L.; Verbeek, W. H. M.; Trimble, V.; Stevens, F. M.; Kelleher, D.; Barisani, D.; Bardella, M. T.; McManus, R.; Van Heel, D. A.; Wijmenga, C. (2009). "Coeliac disease-associated risk variants in TNFAIP3 and REL implicate altered NF- B signalling". Gut 58 (8): 1078–1083. PMID 19240061. doi:10.1136/gut.2008.169052.  edit
  • Talmud, P. J.; Drenos, F.; Shah, S.; Shah, T.; Palmen, J.; Verzilli, C.; Gaunt, T. R.; Pallas, J.; Lovering, R.; Li, K.; Casas, J. P.; Sofat, R.; Kumari, M.; Rodriguez, S.; Johnson, T.; Newhouse, S. J.; Dominiczak, A.; Samani, N. J.; Caulfield, M.; Sever, P.; Stanton, A.; Shields, D. C.; on behalf of the ASCOT investigators; Padmanabhan, S.; Melander, O.; Hastie, C.; Delles, C.; Ebrahim, S.; on behalf of the NORDIL investigators; Marmot, M. G.; Smith, G. D.; Lawlor, D. A. (2009). "Gene-centric Association Signals for Lipids and Apolipoproteins Identified via the HumanCVD BeadChip". The American Journal of Human Genetics 85 (5): 628–642. PMC 2775832. PMID 19913121. doi:10.1016/j.ajhg.2009.10.014.  edit

Lua error in package.lua at line 80: module 'Module:Buffer' not found.