Open Access Articles- Top Results for SLC5A1


SymbolsSLC5A1 ; D22S675; NAGT; SGLT1
External IDsOMIM182380 MGI107678 HomoloGene55456 IUPHAR: 915 ChEMBL: 4979 GeneCards: SLC5A1 Gene
RNA expression pattern
File:PBB GE SLC5A1 206628 at tn.png
More reference expression data
RefSeq (mRNA)NM_000343NM_019810
RefSeq (protein)NP_000334NP_062784
Location (UCSC)Chr 22:
32.44 – 32.51 Mb
Chr 5:
33.1 – 33.16 Mb
PubMed search[1][2]

Sodium/glucose cotransporter 1 is a protein that in humans is encoded by the SLC5A1 gene.[1][2]


Glucose transporters are integral membrane proteins that mediate the transport of glucose and structurally related substances across cellular membranes. Two families of glucose transporter have been identified: the facilitated diffusion glucose transporter family (GLUT family), also known as 'uniporters,' and the sodium-dependent glucose transporter family (SGLT family), also known as 'cotransporters' or 'symporters' (Wright et al., 1994). The SLC5A1 gene encodes a protein that is involved in the active transport of glucose and galactose into eukaryotic and some prokaryotic cells. [supplied by OMIM][2]


Co-transport proteins of mammalian cell membranes had eluded efforts of purification with classical biochemical methods until the late 1980s. These proteins had proven difficult to isolate because they contain hydrophilic and hydrophobic sequences and exist in membranes only in very low abundance (<0.2% of membrane proteins). The rabbit form of SGLT1 is the first mammalian co-transport protein ever to be cloned and sequenced, and this scientific break-through was reported in 1987.[3] To circumvent the difficulties with traditional isolation methods, Swiss-born biochemist Matthias Hediger and his collaborators at UCLA used a novel technique of expression cloning. They size-fractionated large amounts of rabbit intestinal mRNA with a preparative gel electrophoresis device developed by Hediger. These size fractions were then sequentially injected into Xenopus oocytes to ultimately find the RNA species that induced the expression of sodium-glucose cotransport.[4]

See also


SLC5A1 has been shown to interact with PAWR.[5]


  1. ^ Turk E, Martín MG, Wright EM (June 1994). "Structure of the human Na+/glucose cotransporter gene SGLT1". J Biol Chem 269 (21): 15204–9. PMID 8195156. 
  2. ^ a b "Entrez Gene: SLC5A1 solute carrier family 5 (sodium/glucose cotransporter), member 1". 
  3. ^ by Stice L, Steven Ph.D.
  4. ^ Hediger MA, Coady MJ, Ikeda TS, Wright EM (1987). "Expression cloning and cDNA sequencing of the Na+/glucose co-transporter". Nature 330 (6146): 379–81. PMID 2446136. doi:10.1038/330379a0. 
  5. ^ Xie J, Guo Q (July 2004). "Par-4 inhibits choline uptake by interacting with CHT1 and reducing its incorporation on the plasma membrane". J. Biol. Chem. 279 (27): 28266–75. PMID 15090548. doi:10.1074/jbc.M401495200. 

Further reading

  • Wright EM, Loo DD, Panayotova-Heiermann M, Lostao MP, Hirayama BH, Mackenzie B et al. (1995). "'Active' sugar transport in eukaryotes.". J. Exp. Biol. 196: 197–212. PMID 7823022. 
  • Wright EM, Turk E, Martin MG (2003). "Molecular basis for glucose-galactose malabsorption.". Cell Biochem. Biophys. 36 (2–3): 115–21. PMID 12139397. doi:10.1385/CBB:36:2-3:115. 
  • Anderson NL, Anderson NG (2003). "The human plasma proteome: history, character, and diagnostic prospects". Mol. Cell Proteomics 1 (11): 845–67. PMID 12488461. doi:10.1074/mcp.R200007-MCP200. 
  • Turk E, Zabel B, Mundlos S, Dyer J, Wright EM (1991). "Glucose/galactose malabsorption caused by a defect in the Na+/glucose cotransporter". Nature 350 (6316): 354–6. PMID 2008213. doi:10.1038/350354a0. 
  • Hediger MA, Turk E, Wright EM (1989). "Homology of the human intestinal Na+/glucose and Escherichia coli Na+/proline cotransporters". Proc. Natl. Acad. Sci. U.S.A. 86 (15): 5748–52. PMC 297707. PMID 2490366. doi:10.1073/pnas.86.15.5748. 
  • Delézay O, Baghdiguian S, Fantini J (1995). "The development of Na(+)-dependent glucose transport during differentiation of an intestinal epithelial cell clone is regulated by protein kinase C". J. Biol. Chem. 270 (21): 12536–41. PMID 7759499. doi:10.1074/jbc.270.21.12536. 
  • Turk E, Klisak I, Bacallao R, Sparkes RS, Wright EM (1993). "Assignment of the human Na+/glucose cotransporter gene SGLT1 to chromosome 22q13.1". Genomics 17 (3): 752–4. PMID 8244393. doi:10.1006/geno.1993.1399. 
  • Martín MG, Turk E, Lostao MP, Kerner C, Wright EM (1996). "Defects in Na+/glucose cotransporter (SGLT1) trafficking and function cause glucose-galactose malabsorption". Nat. Genet. 12 (2): 216–20. PMID 8563765. doi:10.1038/ng0296-216. 
  • Turk E, Kerner CJ, Lostao MP, Wright EM (1996). "Membrane topology of the human Na+/glucose cotransporter SGLT1". J. Biol. Chem. 271 (4): 1925–34. PMID 8567640. doi:10.1074/jbc.271.4.1925. 
  • Lam JT, Martín MG, Turk E, Hirayama BA, Bosshard NU, Steinmann B et al. (1999). "Missense mutations in SGLT1 cause glucose-galactose malabsorption by trafficking defects". Biochim. Biophys. Acta 1453 (2): 297–303. PMID 10036327. doi:10.1016/s0925-4439(98)00109-4. 
  • Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE et al. (1999). "The DNA sequence of human chromosome 22". Nature 402 (6761): 489–95. PMID 10591208. doi:10.1038/990031. 
  • Obermeier S, Hüselweh B, Tinel H, Kinne RH, Kunz C (2001). "Expression of glucose transporters in lactating human mammary gland epithelial cells". European journal of nutrition 39 (5): 194–200. PMID 11131365. doi:10.1007/s003940070011. 
  • Kasahara M, Maeda M, Hayashi S, Mori Y, Abe T (2001). "A missense mutation in the Na(+)/glucose cotransporter gene SGLT1 in a patient with congenital glucose-galactose malabsorption: normal trafficking but inactivation of the mutant protein". Biochim. Biophys. Acta 1536 (2–3): 141–7. PMID 11406349. doi:10.1016/s0925-4439(01)00043-6. 
  • Roll P, Massacrier A, Pereira S, Robaglia-Schlupp A, Cau P, Szepetowski P (2002). "New human sodium/glucose cotransporter gene (KST1): identification, characterization, and mutation analysis in ICCA (infantile convulsions and choreoathetosis) and BFIC (benign familial infantile convulsions) families". Gene 285 (1–2): 141–8. PMID 12039040. doi:10.1016/S0378-1119(02)00416-X. 
  • Ikari A, Nakano M, Kawano K, Suketa Y (2002). "Up-regulation of sodium-dependent glucose transporter by interaction with heat shock protein 70". J. Biol. Chem. 277 (36): 33338–43. PMID 12082088. doi:10.1074/jbc.M200310200. 

This article incorporates text from the United States National Library of Medicine, which is in the public domain.