Open Access Articles- Top Results for Solar luminosity

Solar luminosity

File:Solar evolution (English).svg
Evolution of the solar luminosity, radius and effective temperature compared to the present-day Sun. After Ribas (2010)[1]

The solar luminosity, L, is a unit of radiant flux (power emitted in the form of photons) conventionally used by astronomers to measure the luminosity of stars. One solar luminosity is equal to the current accepted luminosity of the Sun, which is 3.846×1026 Script error: No such module "convert"., or 3.846×1033Lua error: Unmatched close-bracket at pattern character 67..[2] This does not include the solar neutrino luminosity, which would add 0.023 L.[3] The Sun is a weakly variable star, and its luminosity therefore fluctuates.[4] The major fluctuation is the eleven-year solar cycle (sunspot cycle), which causes a periodic variation of about ±0.1%. Any other variation over the last 200–300 years is thought to be much smaller than this.[5]


The solar luminosity is related to the solar irradiance (the solar constant) measured at the Earth or by satellites in Earth orbit. The solar irradiance is responsible for the orbital forcing which causes the Milankovitch cycles, which determine glacial cycles on Earth. The mean irradiance at the top of the Earth's atmosphere is sometimes known as the solar constant, I. Irradiance is defined as power per unit area, so the solar luminosity (total power emitted by the Sun) is the irradiance received at the Earth (solar constant) multiplied by the area of the sphere whose radius is the mean distance between the Earth and the Sun:

<math>L_\odot = 4\pi kI_\odot A^2\,</math>

where A is the unit distance (the value of the astronomical unit in metres) and k is a constant (whose value is very close to one) that reflects the fact that the mean distance from the Earth to the Sun is not exactly one astronomical unit.

See also


  1. Ribas, Ignasi (February 2010), "The Sun and stars as the primary energy input in planetary atmospheres", Solar and Stellar Variability: Impact on Earth and Planets, Proceedings of the International Astronomical Union, IAU Symposium 264, pp. 3–18, Bibcode:2010IAUS..264....3R, arXiv:0911.4872, doi:10.1017/S1743921309992298 
  2. Williams, David R. (1 July 2013). "Sun Fact Sheet — Sun/Earth Comparison". National Aeronautics and Space Administration. Retrieved 13 April 2014. 
  3. Bahcall, John N. (1989). Neutrino Astrophysics. Cambridge University Press. p. 79. ISBN 978-0-521-37975-5. 
  4. Vieira, L. E. A.; Norton, A.; Dudok De Wit, T.; Kretzschmar, M.; Schmidt, G. A.; Cheung, M. C. M. (2012). "How the inclination of Earth's orbit affects incoming solar irradiance". Geophysical Research Letters 39 (16): n/a. doi:10.1029/2012GL052950.  edit
  5. Noerdlinger, Peter D. (2008). "Solar Mass Loss, the Astronomical Unit, and the Scale of the Solar System". Celestial Mechanics and Dynamical Astronomy 801: 3807. Bibcode:2008arXiv0801.3807N. arXiv:0801.3807. 

Further reading

External links